Phase Failure Relays

Type MPS and MPD

Class 8430

CONTENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Description and Definitions</td>
<td>2</td>
</tr>
<tr>
<td>Ordering Information</td>
<td>3</td>
</tr>
<tr>
<td>Ordering Information and Application Data</td>
<td>4</td>
</tr>
<tr>
<td>Wiring Diagrams</td>
<td>5</td>
</tr>
<tr>
<td>Approximate Dimensions and Weights</td>
<td>6–7</td>
</tr>
</tbody>
</table>
Phase Failure Relays Types MPS and MPD
Class 8430 – Product Description and Definitions

Three-Phase Monitoring
If, for any reason, the motor windings draw more current than they are rated for, excess heat is generated, causing deterioration of the motor insulation. This deterioration is irreversible and cumulative. Eventually, the windings will short to the motor housing, causing motor failure. The reaction time of thermal overload units may be too slow to provide effective protection from the excess heat generated by high current. A phase failure relay, by limiting the overcurrent will help to:

- Increase motor life
- Reduce the very costly repair or replacement of motors
- Minimize downtime due to motor problems
- Reduce the risk of electric shock or fire due to the shorting out of motor windings

Types of Protective Relays
There are two major types of protective relays for three-phase systems: current sensing and voltage sensing. The advantages of current sensing protective relays over voltage sensing relays are that they are not fooled by back EMF (Electromotive Force) which accompanies a phase failure on motor loads and they also can detect an abnormal condition on either the line side or load side in a branch circuit in which the relay is used. Voltage sensing devices can only detect abnormal conditions on the line side of where the relay is connected.

However, a voltage sensing relay has an important advantage in that it can detect an abnormal condition independent of the motor's running status. A current sensing device requires the motor to be running before an abnormal condition can be detected. Therefore, a voltage sensing device will provide pre-start protection while a current sensing device will not. Other advantages of voltage sensing devices are that they are easy to install, are generally less expensive because they do not need current transformers, and require only voltage connections so that they may be applied independent of the system load.

Phase Failure Detection
A phase failure may occur because of a blown fuse in some part of the power distribution system, a mechanical failure within the switching equipment, or if one of the power lines open. A three-phase motor running on single phase draws all of its current from the remaining two lines. Attempting to start a three-phase motor on single phase will cause the motor to draw locked-rotor current and the motor will not start. The reaction time of thermal overload units may be too slow to provide effective protection from the excessive heat generated in the motor windings when a phase failure occurs.

Protecting a three-phase motor against phase failure is difficult because a lightly loaded three-phase motor operating only on single phase will generate a voltage, often called regenerated voltage or back EMF, in its open winding almost equal to the lost voltage. Therefore, voltage sensing devices which monitor only the voltage magnitude may not provide complete protection from a phase failure which occurs when the motor is running. A greater degree of protection can be obtained from a device which can detect the phase angle displacement accompanying a phase failure. Under normal conditions, the three-phase voltages are 120 degrees out of phase with respect to one another. A phase failure will cause a phase angle displacement away from the normal 120 degrees.

Phase Reversal Detection
Phase reversal can occur when maintenance is performed on motor-driven machinery, when modifications are made to the power distribution system, or when power restoration results in a different phase sequence than before the power outage. Phase reversal detection is important if a motor running in reverse may damage the driven machinery or injure personnel. The National Electric Code (NEC) requires phase reversal protection on all equipment transporting people, such as escalators or elevators.

Voltage Unbalance Detection
Voltage unbalance can occur when incoming line voltages delivered by the power company are of different levels, or when single-phase loads such as lighting, electrical outlets and single-phase motors are connected on individual phases and not distributed in a balanced way. In either case, a current unbalance will result on the system which shortens motor life and diminishes motor efficiency. An unbalanced voltage applied to a three-phase motor can result in a current unbalance in the motor windings equal to several times the voltage unbalance. This will increase the heat generated, a major cause of rapid deterioration of motor insulation.

Undervoltage
Undervoltage may occur if the power supplied by the local power company is overloaded, causing the voltage to drop, which is known as a brown out. An undervoltage condition can also occur in remote areas at the end of long power lines. As the voltage available to the motor is decreased, the current drawn by the motor increases, resulting in generated heat which deteriorates the motor insulation.
Phase Failure Relays Type MPS and MPD
Ordering Information – Class 8430

8430MPS
- Socket mounted
- Undervoltage adjustment from 75 to 100%
- Detects phase unbalances over 10%
- Hard output contacts with 240 Vac rating

8430MPD
- Offers the same protection as the 8430MPS
- Surface mounted
- LED indication when relay is energized
- Locking potentiometer undervoltage adjustment
- Hard output contacts with 600 Vac rating

Both relays protect motors against:
- Phase failure
- Voltage unbalance
- Phase reversal
- Undervoltage

Product	**Description**	**Contact Arrangement**	**Monitored Voltage**	**Catalog Number**	**Recommended Socket**
8430MPS	A socket-mounted voltage sensing phase failure relay	SPDT	240 V–60 Hz	8430MPSV24	8501NR51 or 8501NR52
			480 V–60 Hz	8430MPSV29	8501NR82
8430MPD	A surface-mounted voltage sensing phase failure relay	DPDT	120 V–60 Hz	8430MPDV20	
			240 V–60 Hz	8430MPDV24	Not required
			480 V–60 Hz	8430MPDV29	
			600 V–60 Hz	8430MPDV32	

Sockets for 8430MPS Relays
35mm DIN 3 Track Mount or Direct Panel Mount

Product	Description	UL	CSA	Catalog Number	Package Quantity
8 pin tubular single tier screw terminal	10 A, 600 V 15 A, 300 V	10 A, 300 V	8501NR51	1	
			8501NR51B	10	
8 pin tubular double tier screw terminal	5 A, 600 V 16 A, 300 V	10 A, 300 V	8501NR52	1	
			8501NR52B	10	
11 pin spade double tier screw terminal	15 A, 300 V	15 A, 300 V	8501NR82	1	
			8501NR82B	10	

Depending on the application, the RM4 relay should be considered. ▲ Rated 10 A, 480 V when used with a 8430MPSV29 phase failure relay.
Phase Failure Relays Type MPS and MPD
Class 8430 – Ordering Information, Application Data

35 mm DIN 3 Mounting Track

<table>
<thead>
<tr>
<th>Height</th>
<th>Length</th>
<th>Catalog Number</th>
<th>Package Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5 mm (0.30 in.)</td>
<td>0.5 m (19.68 in.)</td>
<td>9080MH220</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.0 m (39.37 in.)</td>
<td>9080MH239</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>2.0 m (78.74 in.)</td>
<td>9080MH279</td>
<td>10</td>
</tr>
<tr>
<td>15.0 mm (0.60 in.)</td>
<td>2.0 m (78.74 in.)</td>
<td>AM1ED200</td>
<td>10</td>
</tr>
</tbody>
</table>

For additional track lengths or technical data, refer to the IEC Type Terminal Block Catalog, 9080CT9602.

Accessories

<table>
<thead>
<tr>
<th>Product</th>
<th>Description</th>
<th>Catalog Number</th>
<th>Package Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Screw-on end clamp</td>
<td>9080MHA10</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Screw-on end clamp</td>
<td>AB1AB8M35</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Hold down for 8430MPS relays</td>
<td>8501NH7</td>
<td>1</td>
</tr>
</tbody>
</table>

Conformity to Standards:

8430MPS
- File E78351 CCN NLDX with proper socket
- File E42240 CCN NLDX without sockets

8430MPD
- File E78351 CCN NLDX
- File O60905 Class 3211 03

8501NR
- File E66924 CCN SW1V2
- File LR84913 Class 3211 07

Output Contact Rating:

<table>
<thead>
<tr>
<th>Type</th>
<th>Maximum Control Circuit Voltage</th>
<th>AC Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inductive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resistive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Make VA</td>
<td>Break VA</td>
</tr>
<tr>
<td>MPS</td>
<td>SPDT</td>
<td>120 240</td>
</tr>
<tr>
<td></td>
<td>DPDT</td>
<td>120 240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>480 600</td>
</tr>
</tbody>
</table>

Undervoltage Adjustment:
75 to 100% of nominal voltage

Phase Unbalance Detection:
Greater than 10%

Maximum Power Consumption:
8430MPS—5.0 VA (240 V), 5.5 VA (480 V)
8430MPD—5.0 VA (120 V), 5.5 VA (240 V), 6.5 VA (480 V), 7 VA (600 V)

Transient Spike Protection:
5000 volts for 50 microseconds

Temperature Rating:
- Operating: -5 to 50 °C (23 to 122 °F)
- Storage: -20 to 70 °C (-4 to 158 °F)

Screw Tightening Torque:
8430MPD: 7–9 lb-in (0.8–1.0 N•m)
8501NR Sockets: 7–9 lb-in (0.8–1.0 N•m)

Wire Range:
8430MPD: One or two #18 to #14 AWG Copper wire (75 °C insulation or higher)
8501NR: One or two #12 to #22 AWG Copper wire (75 °C insulation or higher)

Pick-up Time:
Typically 0.1 seconds when correct three-phase voltage is applied

Drop Out Time:
Typically 3 seconds for any incorrect voltage condition.
8430 MPS and MPD relays will reset automatically when the phase abnormality is corrected. Therefore, 3-wire control should be used to accomplish safe operation of equipment.

Line Side Monitoring
With the relay connected before the starter, the motor can be started in the reverse direction. However, the motor is unprotected against phase failures between the relay and the motor.

With a Nonreversing Starter

With a Reversing Starter

Load Side Monitoring
With the relay connected directly to the motor, the total feed lines are monitored. This connection should not be used with reversing motors.

With a Nonreversing Starter

Interfacing Phase Failure Relays With Shunt Trip Circuit Breakers
Phase failure relays are often used to control a shunt trip circuit breaker. When this is done, care must be taken to ensure that the shunt trip circuit always has an adequate source available. This can be accomplished by using the diagram below.

If a phase failure occurs on L2 or L3, the shunt trip coil will draw power from L1 through the control relay (CR) contacts and phase failure relay contacts (which will change state upon detecting a phase failure). If a phase failure occurs on L1, the control relay (CR) contacts change state. The shunt trip coil will now draw power from L2 through the CR contacts and phase failure relay contacts.

If the control relay coil or contacts, the phase failure relay contacts, or the shunt trip coil does not have the same voltage rating as the motor, control transformers may be interposed where needed.
Phase Failure Relays Type MPS and MPD
Approximate Dimensions and Weights – Class 8430

8430MPSV24
Weight: 7.1 oz (0.20 kg)

8501NR51
Weight: 1.6 oz (0.05 kg)

8501NR52
Weight: 1.6 oz (0.05 kg)

Dimensions = \text{in.} / \text{mm}
Phase Failure Relays Type MPS and MPD
Approximate Dimensions and Weights – Class 8430

Type MPS 480V

8430 MPSV29
Weight: 7.9 oz (0.23 kg)

8501NR82
Weight: 2.3 oz (0.07 kg)

Type MPD

8430MPD
Weight: 15.9 oz (0.45 kg)