

Technology That Produces Precision Measurements

INSTALLATION AND INSTRUCTION MANUAL

PHASE DYNAMICS, INC. Water in Hydrocarbon Analyzer Enhanced/Expanded

March 3, 2010 Document Number 0063-00000-000 Revision F

IMPORTANT NOTE

Your Phase Dynamics analyzer is a matched set of a measurement section and a computer. For proper operation, the following ID numbers of measurement section and calibration ID <u>MUST BE</u> used together. The measurement section's serial number is typically located on the end opposite the explosion-proof housing. The calibration ID is located on the processor board of the computer chassis.

The MATCHED SET of your analyzer is:

5.	Measurement Section S/N	
	Calibration ID	

©2006 Phase Dynamics, Inc.

WARRANTY

This Phase Dynamics product is warranted against defects in material and workmanship for a period of one year from date of shipment. During the warranty period, Phase Dynamics will, at it's option, either repair or replace products which are defective.

For warranty service or repair, this product must be returned to Phase Dynamics. Buyer shall prepay shipping charges to Phase Dynamics and Phase Dynamics shall pay shipping charges to return the product to the Buyer. However, Buyer shall pay ALL shipping charges, duties, and taxes for products returned to (or from) Phase Dynamics from (or to) a country other than the contiguous states of the United States of America. Phase Dynamics warrants that its software and firmware designated by Phase Dynamics for use with an instrument will execute its programming instructions when properly installed on that instrument. Phase Dynamics does not warrant that the operation of the instrument, or software, or firmware will be uninterrupted or error free.

ATTENTION

The Analyzer Module is a sealed unit. Opening the unit will void the warranty. Any information contained within this document that refers to the internal configuration of the analyzer module is for authorized factory technician use only.

LIMITATION OF WARRANTY

The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied software or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or improper site preparation or maintenance.

EXCLUSIVE REMEDIES

The remedies provided herein are Buyer's sole and exclusive remedies. Phase Dynamics shall not be liable for any direct, indirect, special, incidental, or consequential damages, whether based on contract, tort, or any other legal theory.

i

PREFACE

SAFETY INFORMATION

THIS PRODUCT AND RELATED DOCUMENTATION MUST BE REVIEWED FOR FAMILIARIZATION WITH SAFETY MARKINGS AND INSTRUCTIONS BEFORE OPERATION.

SAFETY LABELS

WARNING

Denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

CAUTION

Denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAUTION sign until the indicated conditions are fully understood and met.

BEFORE APPLYING POWER

Verify that the line voltage is appropriate for the analyzer. Refer to the installation section.

ELECTROSTATIC DISCHARGE

CAUTION

Protect circuit boards and terminals from ESD at all times.

All of the printed circuit board assemblies of this system are susceptible to damage from electrostatic discharge (ESD). Use appropriate grounding through the use of grounded wrist straps or other acceptable form of ESD protection when handling ESD sensitive components.

SAFETY EARTH GROUND

WARNING

An uninterruptible safety Earth ground must be provided from the main power source to the product input wiring terminals. Using Neutral as Earth Ground may cause a potential shock hazard that could result in personal injury.

This product is provided with a protective Earth terminal, located on the lower-left side of the analyzer chassis and on the bottom of the oscillator housing.

Any interruption of the protective grounding conductor (inside or outside the instrument) or disconnecting the protective Earth terminal will cause a potential shock hazard that could result in personal injury. Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

If this instrument is to be energized via an autotransformer (for voltage reduction), make sure the common terminal is connected to the Earth pole terminal (neutral) of the power source.

Instructions for adjustments while covers are removed and for servicing are for use by service-trained personnel only. To avoid dangerous electrical shock, do not perform such adjustments or servicing unless qualified to do so.

ATTENTION LABELS

ATTENTION

Denotes an important step or technical note. It calls attention to an important procedure or note.

TABLE OF CONTENTS

RANT f	<u>i</u>
ATION OF WARRANTY	i i
ACE	<u> ii</u>
TY INFORMATION TY LABELS DRE APPLYING POWER TROSTATIC DISCHARGE TY EARTH GROUND NTION LABELS	ii ii ii .iii .iii
NALYZER SPECIFICATIONS	<u>12</u>
SYSTEM ANALYZER STANDARD FEATURES OPTIONS PC SOFTWARE & TOOLS	12 12 13 13 13
YSTEM OVERVIEW	<u>14</u>
DESCRIPTIONSYSTEM ANALYZER MEASUREMENT SECTION TYPICAL OPERATION PRINCIPLE OF OPERATION (OSCILLATOR LOAD-PULL) OIL AND WATER CONTINUOUS EMULSIONS (FULL RANGE ANALYZERS) EFFECT OF DISSOLVED SALTS (FULL & HIGH RANGE ANALYZERS)	14 15 16 17 17 18 20
STALLATION	<u>21</u>
PRE-INSTALLATION NOTES MOUNTING CONSIDERATIONS MEASUREMENT SECTION ANALYZER & OPERATOR INTERFACE TERMINAL (OIT) INSTALLATION DRAWINGS BASIC ELECTRICAL WIRING	21 21 22 22 22 22 22
	ATION OF WARRANTY

3.5.1	MODBUS [®] RTU PORTS 1-4	
3.5.2	HART [®] PORT	
3.5.3	IrDA PORT	25
<u>4. 0</u>	PERATOR INTERFACE TERMINALS	26
1 1		26
4.1 111		20
4.1.1 11 1 2		20
4.1.Z		20 27
4.2		27 27
422	TOUCH SCREEN INPUT	28
4.2.3	OIT BATTERY	
4.2.4	OIT LCD CONTRAST ADJUSTMENT	
4.2.5	OIT LANGUAGE SELECTION	
4.2.6	DEMONSTRATION MODE	
5 M	IENIL CHARTS AND DIAGRAMS	37
<u>o. m</u>		
6. D	ETAILED FUNCTIONAL DESCRIPTIONS	44
6.1	POWER-UP SYSTEM TESTS	
6.2	PERIODIC SELF TESTS	
6.3	TYPICAL OPERATION	44
6.4	POWER BOARD	44
6.5	PROCESSOR BOARD	44
6.5.1	BOOTLOADER	45
6.6	COMMUNICATIONS BOARD	45
6.7	ANALYZER BOARD	45
6.8	ANALOG I/O BOARD	
6.9	MICROWAVE OSCILLATOR	46
7. C	ALIBRATION PROCEDURE	47
7.1	FACTORY CALIBRATION - LOW & MID RANGE ANALYZERS	47
7.2	FIELD CALIBRATION - LOW & MID RANGE ANALYZERS	47
7.2.1	MANUAL CALIBRATION	47
7.2.2		47
7.3	FACTORY CALIBRATION - FULL & HIGH RANGE ANALYZERS	
7.4	FIELD SALINITY CALIBRATION - FULL & HIGH RANGE ANALYZERS	
1.4.1		
1.4.2	AUTOMATIC CALIBRATION FOR TOUCHSCREEN ONLY	49

8.	THEORY OF OPERATION - LOW RANGE ANALYZERS	52
8.1	DETAILED DESCRIPTION OF FREQUENCY RESPONSE	52
8.2	TEMPERATURE COMPENSATION	
8.3	VIEWING THE O-CONSTANTS	
9.	THEORY OF OPERATION - FULL RANGE ANALYZERS	56
9.1	DETAILED DESCRIPTION FOR OIL CONTINUOUS EMULSIONS	56
9.2	DETAILED DESCRIPTION FOR WATER CONTINUOUS EMULSIONS	59
9.3	TEMPERATURE COMPENSATION	61
9.4	VIEWING THE O-CONSTANTS	62
9.5	VIEWING THE W-CONSTANTS	62
<u>10.</u>	THEORY OF OPERATION - MID RANGE ANALYZERS	63
<u>11.</u>	THEORY OF OPERATION - HIGH RANGE ANALYZERS	64
12.	ANALYZERS	65
<u>13.</u>	INSTRUMENT REPAIR AND SERVICE	66
13.1	1 ASSISTANCE AND FACTORY ADDRESS	66
13.2	2 ELECTROSTATIC DISCHARGE (ESD)	66
13.3	3 MEASUREMENT SECTION AND ANALYZER	66
13.4	4 RETURNING ITEMS TO THE FACTORY	66
13.5	5 RETURNING THE ANALYZER AND MEASUREMENT SECTION	66
13.6	6 TROUBLESHOOTING WORKSHEET	66
<u>14.</u>	TROUBLESHOOTING GUIDE	70
<u>15.</u>	GLOSSARY	72
<u>AP</u>	PENDIX A	75
A.1	MODBUS [®] RTU	75
A.2	2 FLOATING-POINT / LONG INTEGER FORMAT	76
A.3	INTEGER / ASCII BYTE-PAIR FORMAT	76
vi		

A.4 A.5	ANALYZER MODES DIAGNOSTICS REGISTER BIT DEFINITIONS	76 77 79
A.0		
A./	SAVING THE USER-CONFIGURATION	
A.8		
A.9	CALIBRATION WITH MODBUS	80
<u>APPEI</u>	NDIX B	91
R 1	HART [®]	01
B 2	COMMAND 128. READ EL OATING-POINT DEVICE PARAMETERS	
B.2 B.3	COMMAND 129: WRITE ELOATING-POINT DEVICE PARAMETER	
B.3 B.4	COMMAND 130: READ DISCRETE	
B 5	COMMAND 131: WRITE DISCRETE	96
B.6	COMMAND 132: READ INTEGER DEVICE PARAMETER	97
B.0 B.7	COMMAND 132: WRITE INTEGER DEVICE PARAMETER	98
B 8	COMMAND 134: READ DEVICE VARIABLES	99
B.9	COMMAND 135' READ INTEGER DEVICE VARIABLES	
B.10	HART [®] TABI FS	102
B 10 1	HART [®] DYNAMIC VARIABIES	102
B 10 2	HART [®] DEVICE PARAMETERS – ELOATING-POINT	103
B 10 3	HART® DEVICE DISCRETES	104
B.10.4	HART [®] DEVICE PARAMETERS – INTEGER	
B.10.5		
	NDIX C	<u>110</u>
		110 110
C.1	OIT ENCLOSURE HEATER - 120VAC	110 110
C.1 C.1.1	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION	110
C.1 C.1.1 C.1.2	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS	110 110 110 110
C.1 C.1.1 C.1.2 C.1.3	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS	110 110
C.1 C.1.1 C.1.2 C.1.3 C.2	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 230VAC	110 110
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 230VAC DESCRIPTION	110 110 110 110 110 111 111 111
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 230VAC DESCRIPTION WIRING INSTRUCTIONS ELISE	110 110 110 110 110 111 111 111 111
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.2	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 230VAC DESCRIPTION WIRING INSTRUCTIONS FUSE	110 110 110 110 110 111 111 111 111
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3 C.3 1	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 230VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 24VDC DESCRIPTION	110 110 110 110 110 111 111 111 111
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3 C.3.1 C.3.2	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 230VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 24VDC DESCRIPTION WIRING INSTRUCTIONS	110 110 110 110 110 111 111 111 111
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3.1 C.3.2 C.3.3	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 230VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 24VDC DESCRIPTION WIRING INSTRUCTIONS FUSE DESCRIPTION WIRING INSTRUCTIONS ELISE	110
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3.1 C.3.2 C.3.3	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 230VAC. DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 24VDC. DESCRIPTION WIRING INSTRUCTIONS FUSE	110
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3 C.3.1 C.3.2 C.3.3	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 230VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 24VDC DESCRIPTION WIRING INSTRUCTIONS FUSE	110 110 110 110 110 110 111 111 111 112 112 112 112
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3 C.3 C.3.1 C.3.2 C.3.3 APPEI	OIT ENCLOSURE HEATER - 120VAC	110 110 110 110 110 110 111 111 111 112 112 112 113
C.1.1 C.1.1 C.1.2 C.1.3 C.2.1 C.2.2 C.2.3 C.3.1 C.3.2 C.3.3 APPEI	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION WIRING INSTRUCTIONS FUSE OIT ENCLOSURE HEATER - 230VAC DESCRIPTION WIRING INSTRUCTIONS FUSE. OIT ENCLOSURE HEATER - 24VDC DESCRIPTION WIRING INSTRUCTIONS FUSE	110
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3.1 C.3.2 C.3.3 APPEI D.1	OIT ENCLOSURE HEATER - 120VAC DESCRIPTION	110110110110110110111111111112112112113113113
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3 C.3 C.3.1 C.3.2 C.3.3 APPEI D.1 D.2	OIT ENCLOSURE HEATER - 120VAC	110
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3.1 C.3.2 C.3.3 APPEI D.1 D.2 D.2.1	OIT ENCLOSURE HEATER - 120VAC	110
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3.1 C.3.2 C.3.3 APPEI D.2 D.2.1 D.2.2 D.2.2	OIT ENCLOSURE HEATER - 120VAC	110 110
C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 C.3 C.3 C.3 C.3.1 C.3.2 C.3.3 APPEI D.2.1 D.2.1 D.2.2 D.2.3	OIT ENCLOSURE HEATER - 120VAC	110

<u>APP</u>		114
E.1	COMPARISON OF METHODS FOR THE DETERMINATION OF WATER IN OIL	114
<u>APP</u>	PENDIX F	115
F.1	Installation Drawings	115
INDI	EX	155

LIST OF FIGURES

FIGURE 2.1 - PHASE DYNAMICS LOAD-PULL SYSTEM FOR MEASURING WATER IN HYDROCARBONS.	.14
FIGURE 2.2 - PHASE DYNAMICS ANALYZER CHASSIS	.15
FIGURE 2.3 - TYPICAL FLOW-THROUGH MEASUREMENT SECTION	.16
FIGURE 2.4 - TYPICAL INSERTION MEASUREMENT SECTION	.16
FIGURE 2.5 - TYPICAL FLOW-THROUGH MEASUREMENT SECTION AND CENTER ROD	.18
FIGURE 2.6 - REFLECTED POWER LEVELS FOR OIL-WATER EMULSIONS	.19
FIGURE 2.7 - EFFECT OF DISSOLVED SALTS	.20
FIGURE 3.1 - ANALYZER TERMINALS	.23
FIGURE 3.2 - RELAY TERMINALS	.24
FIGURE 5.1 - COMMON MENUS (TOUCH SCREEN INPUT)	.40
FIGURE 5.2 - TYPICAL ANALYZER MENUS (TOUCH SCREEN INPUT)	.41
FIGURE 5.3 - COMMON MENUS (MSVE INPUT ON TOUCH SCREEN)	.42
FIGURE 5.4 - TYPICAL ANALYZER MENUS (MSVE INPUT ON TOUCH SCREEN)	.43
FIGURE 8.1 - LINEAR FACTORY CALIBRATION, FREQUENCY VERSUS WATER CONTENT	.53
FIGURE 8.2 - EFFECT OF CHANGING OIL ADJUST	.53
FIGURE 8.3 - EFFECT OF CHANGING INDEX	.54
FIGURE 8.4 - REFLECTED POWER THRESHOLD CURVE	.54
FIGURE 8.5 - EFFECT OF TEMPERATURE ON FREQUENCY	.55
FIGURE 9.1 - FACTORY CALIBRATION, FREQUENCY VS. WATER CONTENT, OIL CONTINUOUS	.57
FIGURE 9.2 - EFFECT OF CHANGING OIL ADJUST	.57
FIGURE 9.3 - EFFECT OF CHANGING OIL INDEX	.58
FIGURE 9.4 - REFLECTED POWER THRESHOLD CURVE, OIL CONTINUOUS	.59
FIGURE 9.5 - FACTORY CALIBRATION, FREQUENCY VS. WATER CONTENT, WATER CONTINUOUS	.60
FIGURE 9.6 - EFFECT OF CHANGING WATER ADJUST	.60
FIGURE 9.8 - EFFECT OF TEMPERATURE ON FREQUENCY, OIL CONTINUOUS	.61
FIGURE 9.9 - EFFECT OF TEMPERATURE ON FREQUENCY, WATER CONTINUOUS, ONE SALINITY	.62
FIGURE B.1 - TYPICAL HART [®] CONNECTION DIAGRAM	.92
FIGURE C.1 - TYPICAL 120VAC HEATER ASSEMBLY TERMINAL BLOCK1	10
FIGURE C.2 - TYPICAL 230VAC HEATER ASSEMBLY TERMINAL BLOCK1	11
FIGURE C.3 - TYPICAL 24VDC HEATER ASSEMBLY TERMINAL BLOCK	12

LIST OF TABLES

TABLE 5.1 - TECHNICIAN MENU (4-LINE LCD)	37
TABLE 5.2 - NORMAL MENU (4-LINE LCD)	39
TABLE 6.1 - PORT DEFAULT SETTINGS	45
TABLE 6.2 - DEFINITIONS OF TIMING PARAMETERS (IN BYTE-TIMES):	45
TABLE A.1 - DIAGNOSTICS BITS	77
TABLE A.2 - DIAGNOSTICS ERROR CODES	78
TABLE A.3 - AUTOSAVE OFFSETS	79
TABLE A.4 - MODBUS [®] INTEGER TABLE	81
TABLE A.5 - MODBUS [®] FLOATING-POINT / LONG INTEGER TABLE	84
TABLE A.6 - MODBUS [®] DISCRETE IO / COIL TABLE	89
TABLE A.7 - MODBUS [®] COEFFICIENT TABLE (IEEE ABCD)	90
TABLE B.1 - HART [®] Dynamic Variable Table	. 102
TABLE B.2 - HART [®] FLOATING-POINT DEVICE PARAMETER TABLE	.103
TABLE B.3 - HART [®] Device Discrete Table	.104
TABLE B.4 - HART [®] INTEGER DEVICE PARAMETER TABLE	. 105
TABLE B.5 - HART [®] Device Variable Table	. 106
TABLE B.6 - HART [®] INTEGER DEVICE VARIABLE TABLE	. 109
TABLE E.1 - COMPARISON OF WATER IN CRUDE METHODS OF WATER CONTENTS LESS THAN 1%	, 114

INSTALLATION AND INSTRUCTION MANUAL

PHASE DYNAMICS, INC. Water in Hydrocarbon Analyzer

1. ANALYZER SPECIFICATIONS

1.1 SYSTEM

Range of Measurement	0-4%, 0-10%, 0-20%, 0-Inversion, 80-100%, or 0-100% water content
Accuracy	±1.0% of scale
Repeatability	±0.05% of scale
Flowing Fluid Temperature	Low water content: 4° to 82°C, optional 93°C - high temperature unit Full water content: up to 315°C
1.2 ANALYZER	
Power Requirements	24VDC±5%, 2.0A
Ambient Operating Temperature	0° to 50°C
Storage Temperature	0° to 50°C
Pressure rating	Up to 1,500psig, depending on process connection
Installation weight and size:	See installation drawing in Appendix G

1.3 STANDARD FEATURES

- Wetted metal 316L stainless steel
- No moving parts
- Real-time measurement of water content
- Temperature-compensated measurement for high accuracy
- Surge suppression at line voltage input
- Built-in self-tests for diagnostics
- Data logging to internal FLASH memory
- Four MODBUS[®] RTU RS-485 communication ports
- One HART communication port
- Net Oil and Net Water Computer: The analyzer reads a user-supplied flow meter to calculate net oil, net water, and/or total fluid values; or the analyzer accepts a user input for density.
- Density Correction: The analyzer reads a user-supplied densimeter to correct the water content calculation; or the analyzer accepts a user input for density.

1.4 OPTIONS

- 4 additional Analog Inputs and Outputs
- Materials of construction (Duplex, Carpenter 20, etc.)
- Process connections: ANSI 150, 300, or 600 flanges; others upon request
- Extended analyzer ranges (i.e. 0-4%, 0-10%, 0-20%, 0-Inversion, 80-100%, or 0-100% available)
- Color Touch-Screen Operator Interface Terminal, Class 1, Division 2, Groups ABCD
- 4-Line LCD Operator Interface Terminal
- OIT enclosure: Cast aluminum (NEMA 4, 7 and 9); fiberglass (NEMA 4X); Stainless Steel (NEMA4X) without external MSVE buttons
- Wide-range input (100-240VAC) 24VDC Power Supply Class 1, Div2, Groups ABCD
- Heater module (120VAC, 230VAC, 24VDC)

1.5 PC SOFTWARE & TOOLS

- Analyzer Configuration Utility^{*} "PDI Configuration": loads program, displays current readings, configures with GUI, logs data, reads, and writes the analyzer's configuration.
- *Mini Analyzer Configuration Utility^{*} "PDI Profiler"*: reads and writes the analyzer's configuration.
- Data Log Tool: color touch-screen option allows data logging to compact flash cards. Requires compact flash card reader to retrieve data from card.
- * Requires a Windows-based computer with an RS-485 connection.

2. SYSTEM OVERVIEW

2.1 DESCRIPTION

This Phase Dynamics analyzer measures the percentage of water in a flowing hydrocarbon liquid stream. The measurement technique is based on a principle known as oscillator load-pull. The system is designed with no moving parts and is calibrated for the highest accuracy over a broad range of pressure, flow rate and temperature.

2.1.1 SYSTEM

The system consists of three components, as shown in Figure 2.1,

- 1. a measurement section with an oscillator (inside explosion-proof enclosure),
- 2. an analyzer with optional operator interface terminal (OIT shown with explosion-proof enclosure), and
- 3. an optional system cable connecting the two.

Figure 2.1 - Phase Dynamics Load-Pull System for Measuring Water in Hydrocarbons

2.1.2 ANALYZER

The Analyzer has

- 1. an OIT either a 4-line LCD interface, or a color liquid crystal display with touch screen,
- 2. a four buttons for use in hazardous areas,
- 3. a power board,
- 4. a processor board,
- 5. a communications board with 4xRS-485 transceivers and 1xBELL-202 transceiver,
- 6. an optional analyzer board for measuring standard oscillator modules, pulse input, analog input, analog output,
- 7. an optional analog input/output board for an additional 4 analog inputs, 4 analog outputs, 2 pulse inputs,
- 8. an optional heater, and
- 9. an optional 100-240VAC to 24VDC power supply.

Figure 2.2 - Phase Dynamics Analyzer Chassis

2.1.3 MEASUREMENT SECTION

The measurement sections, shown in Figures 2.3 and 2.4, are an assembly of

- 1. a measurement section,
- 2. a temperature sensor, and
- 3. a microwave oscillator mounted within a protective enclosure.

Figure 2.4 - Typical Insertion Measurement Section

2.2 TYPICAL OPERATION

During typical operation, the analyzer's operating sequence can be described as follows:

On power-up, the analyzer module performs a set of self-tests to assure functionality.

A heater maintains the oscillator at 70°C. This eliminates any frequency drift due to circuit temperature changes, which may result in errors in the water content calculation.

Fluids flowing through the measurement section act on the unbuffered microwave oscillator to force a change in its natural frequency of oscillation. The resultant frequency is measured and applied to the water content calculation.

The 4-wire RTD temperature sensor, protruding directly into the liquid stream through the measurement section wall of the saddle nearest the microwave oscillator, transmits the temperature signal to the analyzer module.

The analyzer measures the oscillator's reflected power and frequency. The reflected power and the frequency information is used to determine an out-of-range condition or the emulsion phase condition whereby the water content is calculated using the frequency and fluid temperature with factory-derived coefficients.

The frequency measurement cycle is repeated approximately once per second to provide a real-time measurement of water content.

While measuring the water content, the analyzer periodically executes self-test diagnostic functions to determine if any functional aspect of the system is in error. These self-tests are completed "in the background" and in no way affect the fundamental measurement or calculation of water content.

The operator interface terminal (OIT) has either a color LCD touch screen interface or a 4-line LCD interface. There are four external switches labeled "MENU", "SELECT", "VALUE", and "ENTER" that allow the operator to access a variety of parameters and coefficients. The values for these parameters may be changed and entered into the operating memory of the analyzer to provide proper outputs and accurate water content measurements.

2.3 PRINCIPLE OF OPERATION (OSCILLATOR LOAD-PULL)

Phase Dynamics analyzers achieve superior performance by utilizing microwave oscillator load-pull. Load-pull is the term given to describe the frequency change of an unbuffered oscillator as its output load varies. Circuit components and the external load impedance determine an unbuffered oscillator's frequency. The permittivities of the materials in the measurement section through which the microwaves propagate determine the output load. For low-loss materials such as low water content crude oil, the dielectric constant approximates the permittivity of the emulsions.

A typical flow-through measurement section has a small solid rod mounted inside a larger diameter pipe, as shown in Figure 2.5. One end of the rod is connected to an unbuffered oscillator and the other end connects to the center of a welded "shorting" plug, or left open depending on the design. The rod may be bare or covered with ceramic. Electrically this pipe and rod combination is a coaxial transmission line terminating into a short-circuit or an open-circuit, depending on the type of analyzer. The fluids flow through the measurement section. The microwave signal travels the length of the center rod twice; down the pipe from the oscillator, then reflects at the end and traverses back to the oscillator module.

Figure 2.5 - Typical Flow-Through Measurement Section and Center Rod

Primarily, the dielectric constant of the emulsion in the measurement section determines the unbuffered oscillator's frequency. There is a large difference in the relative dielectric constant of oil (2.2) and water (68). This large dielectric difference results in the design of an instrument of a manageable size and a reasonable oscillator frequency. The dielectric constant of the fluid is proportional to the water-to-oil ratio in the measurement section. As the complex load impedance changes, due to a change in the percentage of water in the oil, the frequency of the oscillator changes. The frequency and the fluid temperature are continuously measured. These values are used to calculate the water content.

In summary, the permittivity of the oil-water emulsion in the measurement section provides a complex impedance, or load. The load acts directly upon the unbuffered oscillator to force a predictable, repeatable and precise change in frequency. This frequency is proportional to the water content of the emulsion. The analyzer uses the measured frequency to calculate and update the water content every second.

2.4 OIL AND WATER CONTINUOUS EMULSIONS (FULL RANGE ANALYZERS)

Oil-water emulsions may exist in two phase-states. The emulsion may be described as water drops suspended in a continuous medium of oil (oil continuous or oil external) or oil drops suspended in a continuous medium of water (water continuous or water external). The phase of the emulsion is determined by a number of factors including water content, temperature, pressure, salinity, crude API, presence of emulsifiers, etc.

Furthermore, there is a wide range of water contents (about 40-90%) which may exist in either phase. The system must first determine the correct phase before any accurate water content data may be calculated.

The oscillator of each system contains two separate circuits, each operating at different frequencies. Each circuit is optimized for the best pulling for a particular phase - one oscillator for oil continuous emulsions and the other for water continuous emulsions. These circuits are often referred to as the Oil Oscillator and the Water Oscillator. At times, two emulsions, one oil continuous and one water continuous, with significantly different water contents, may give the same measured frequency of the load-pull system. A second parameter is measured to distinguish the phase.

The emulsion phase-state is determined by the oscillator's reflected power. Water continuous emulsions yield much lower reflected power levels than oil continuous emulsions because the energy is dissipated through the conductive water, as shown in Figure 2.6.

Oil continuous emulsions are much less lossy than water continuous emulsions. For this case, the microwave energy travels down the measurement section and back with very little loss in the emulsion itself; the reflected power level is higher than that for water continuous emulsions, as shown in Figure 2.6.

In summary, the system monitors the reflected power level to determine the phase. Oil continuous emulsions exhibit much higher power levels than water continuous emulsions. Once the phase is determined, the analyzer calculates the water content using the oscillator frequency correlating to the current emulsion phase.

Figure 2.6 - Reflected Power Levels for Oil-Water Emulsions

2.5 EFFECT OF DISSOLVED SALTS (FULL & HIGH RANGE ANALYZERS)

For water continuous emulsions, dissolved salts significantly affect the load (measurement section plus liquids) as seen by the microwave oscillator. For oil continuous emulsions, dissolved salts have little or no effect. One measured frequency corresponds to a range of water contents in the water continuous phase, depending on the concentration of dissolved salts, as shown in Figure 2.7.

Each Phase Dynamics system includes compensation for effects due to dissolved salts. Accurate measurement and manual entry of the salinity is required for accurate water content measurements.

IMPORTANT

For optimum performance, it is IMPERATIVE that the salinity calibration routine be executed properly.

Figure 2.7 - Effect of Dissolved Salts

3. INSTALLATION

3.1 PRE-INSTALLATION NOTES

The materials of construction for Phase Dynamics analyzers are capable of withstanding a wide variety of harsh environments. The measurement section itself is made of standard pipe and flanges that are used on a routine basis for the industry serviced. The microwave oscillator is assembled in a protective housing which is then completely enclosed in an explosion-proof junction box, provided with a screw-on cap for access. The analyzer and operator interface terminal (OIT) are mounted on a protective aluminum chassis. This chassis is then mounted and protected in either a cast-aluminum explosion-proof enclosure (rated NEMA 4,7, and 9) or a fiberglass enclosure (rated NEMA 4X) which is rain-tight, dust-proof, and corrosion resistant.

The analyzer's enclosure should be mounted in a location that avoids exposure to prevailing winds in freezing climates. An optional enclosure heater is available for continuous cold weather operation. Conversely, the enclosure should be mounted in a shaded area to avoid direct sunlight for geographic regions where ambient temperatures are above 38°C. All enclosures are rated as watertight.

The oscillator inside the analyzer contains a miniature heater to maintain the critical circuit at 70°C. The junction box protecting the analyzer module is provided with an O-ring for the screw-on cap and forms a watertight seal.

3.2 MOUNTING CONSIDERATIONS

3.2.1 MEASUREMENT SECTION

The preferred orientation of the measurement section is vertical with the analyzer end up. Fluid flow comes into the connection closest to the analyzer and exits the other port. For best results, liquid flow in the measurement section should be **turbulent** to keep the oil and water mixed and to "flush" any gas or water accumulation within the measurement section. (A static mixer may be necessary for very low flow rates.)

If free gas is present in the liquid stream, the output should be mounted higher than the input to allow the gas to escape the measurement section. Gas tends to decrease the calculated water content.

For slipstream applications, verify that the fluids flowing through the measurement section precisely represent the fluids of the main stream. For best results in slipstream plumbing, the input line-pipe should be the same diameter, or smaller, as that of the measurement section.

While the above guidelines are the preferred orientation, field experience has verified the accurate measurement of water content for a variety of mounting schemes, including vertical, either end up, horizontal, flanges up or down, and the measurement section "on its side".

The most important points to keep in mind are:

- 1. well-mixed water and oil in the measurement section,
- 2. turbulent flow,
- 3. zero gas content (or, at least, long term constant gas content), and
- 4. representative emulsions in slip-streams.

3.2.2 ANALYZER & OPERATOR INTERFACE TERMINAL (OIT)

TECH NOTE

10m of system cable is supplied to connect the analyzer to the measurement section. Longer system cables (up to 30m) are available from Phase Dynamics, if required. Phase Dynamics recommends the use of one single cable; DO NOT splice cables together

The analyzer should be mounted at a recommended height of 1.5m. Ease of viewing, convenience of wiring, and simplicity of operation are the only restrictions for the orientation of the electronics enclosure.

3.3 INSTALLATION DRAWINGS

Detailed installation drawings are included with each system to assist in preparation of mounting and installation. Refer to the appropriate drawings for installation of your particular system.

3.4 BASIC ELECTRICAL WIRING

Mount the analyzer and the measurement section according to the appropriate installation drawing.

Failure to provide EARTH GROUND may cause a shock hazard that could result in personal injury. Also, the instrument may be damaged and will not operate properly - the warranty is voided.

WARNING

An uninterruptible safety Earth ground MUST BE provided from the main power source to the Power input board terminal marked EARTH GROUND.

Connecting NEUTRAL to EARTH GROUND is NOT sufficient for safety Earth ground.

Install conduit between the analyzer and the measurement section. The oscillator end of the cable has a special connector. Cut the excess cable length and strip the individual wires. Please refer to the installation drawings for more wiring options.

Each Phase Dynamics analyzer is equipped to measure the process stream temperature with a 4-wire RTD. Verify that the wires of the temperature probe are connected properly to the plug on the end of the oscillator module. Once connected, the Phase Dynamics analyzer is ready for the startup procedure.

Figure 3.1 - Analyzer Terminals

3.5 COMMUNICATION CONNECTIONS

3.5.1 MODBUS® RTU PORTS 1-4

The MODBUS[®] RTU RS-485 ports can be used for various functions.

- 1. Phase Dynamics utilities, configuration tools, etc
- 2. Operator interface terminal
- 3. SCADA application designed by the user

The receiver's input resistance is $12k\Omega$.

The slew rate limited port has ESD protection.

Please refer to Appendix A for more information about MODBUS[®].

TECH NOTE Processor Board dip switch 66-S2.3 forces default port settings for all ports upon restart.

3.5.2 HART[®] PORT

The network HART[®] BELL202 / ISOLATED ANALOG OUTPUT (4-20mA) can be used for any HART[®] application. The HART terminals are located on 2 test clips and Analog Output channel 1.

The maximum allowable loop resistance is 600Ω .

The port has fuse protection, ESD protection, and transient voltage suppression Please refer to Appendix B for more information about HART[®].

3.5.3 IrDA PORT

The optional IrDA port provides easy field-configuration with a Pocket PC. Class I Division I pocket PCs are available.

4. OPERATOR INTERFACE TERMINALS

4.1 4-LINE LCD OIT

The standard 4-line LCD display is a cost-effective operator interface terminal. It provides the user with the ability to view process variables, view diagnostics, and set parameters through a 4-button interface.

4.1.1 DISPLAY MODE SELECTION

Four switches are located on the rear of the display board. These switches select the mode for the display.

NORMAL			
-	-		

Normal mode (OFF-OFF-XX-XX) contains basic menus for normal operation.

Technician mode (ON-OFF-XX-XX) contains all menus including installation and configuration settings.

User mode (OFF-ON-XX-XX) is a user-defined menu that is a subset of the Technician menu.

User menu (ON-ON-XX-XX) definition mode is not available in this release. For this release, USER mode is a subset of the Normal mode. It contains information, diagnostic, stream select, and access to technician mode menus.

Write-protect mode (XX-XX-ON-XX) prevents all data entry until a password is entered. The default password is 1234. When unlocked, the unit will remain unlocked until either a power-cycle or until MENU is pressed for about 5 seconds to logout and return to the main screen.

Lockdown mode (XX-XX-XX-ON) prevents all data entry and menu activity, except on the main screen.

4.1.2 MSVE BUTTON INPUT

Four function switches allow the user to operate the interface terminal. The four user interface switches are labeled "MENU", "SELECT", "VALUE", and "ENTER". These control buttons allow the user to interact with the

LCD display to complete a variety of tasks including scaling of outputs, adjusting calibration factors, and modifying factory coefficients.

The MENU button scrolls through the list of MENU items. Each time MENU is pressed, a new screen is displayed until all items have been shown and the normal display returns to the first screen. Holding MENU will force the LCD to display the main screen and enable the lockouts, if enabled. Alternatively, holding MENU until either "<<<<<" or ">>>>>" displays will change the direction that the MENU advances.

The SELECT and VALUE buttons change the value of the selected menu item. Pressing SELECT begins the input session. When changing a parameter's value, SELECT moves a blinking cursor to each digit of the parameter. Each time the VALUE button is pressed, the digit's value increments by one, and recycles when the end is reached. If the selected digit is a sign, press SELECT to insert another digit or press SELECT to toggle the sign between "+" and "-".

Pressing ENTER will store the value for the selected menu item. Once ENTER has been pressed, the new value is stored, the user configuration is automatically saved, and THE OLD VALUE IS LOST. The ENTER button must be pressed to store a new value for the parameter, otherwise the desired new value is ignored and the last valid value is retained. Pressing MENU will cancel the input.

4.2 COLOR TOUCH-SCREEEN OIT

The Operator Interface Terminal is a dedicated MODBUS[®] communications device. It displays process information and diagnostics; and it accepts user input for configuration through either a touch screen interface or a four-button interface. Its communication parameters may be changed, but it is recommended to operate at the default settings: 115200 baud, 8 Data Bits, No Parity, and 1 Stop Bit. It is configured to operate directly with either port 2 on the analyzer, or a dedicated port on some models.

The display has a user-changeable backlight for illuminating the LCD. After 15 minutes of inactivity, the screen will automatically go blank. Simply touch the screen or one of the input buttons to activate the display.

4.2.1 MSVE BUTTON INPUT

To maintain an explosion proof rating, four function switches allow the user to operate the interface terminal without having to open the OIT enclosure to access the touch screen. The four user interface switches are labeled "MENU", "SELECT", "VALUE", and "ENTER". These control buttons allow the user to interact with the OIT to complete a variety of tasks including scaling of outputs, adjusting calibration factors, and modifying factory coefficients.

The MENU button scrolls through the list of simplified MENU items, which are a subset of the normal touch screen menus. Each time MENU is pressed, a new screen is displayed until all items have been shown and the normal display returns to the first screen. Holding MENU will force the OIT to go to the main screen.

The SELECT and VALUE buttons change the value of the selected menu item. Pressing SELECT moves a selection arrow to select a parameter to be changed. Pressing ENTER will select that parameter for entry. When changing a parameter's value, SELECT moves a blinking cursor to each digit of the parameter. Each time the VALUE button is pressed, the digit's value increments by one, and recycles when the end is reached. Holding SELECT will force the OIT to go to the information screen.

Pressing ENTER will store the value for the selected menu item. Once ENTER has been pressed, the new value is stored and THE OLD VALUE IS LOST. The ENTER button must be pressed to store a new value for the parameter, otherwise the desired new value is ignored and the last valid value is retained. Pressing MENU will cancel the input. If a small floppy disk icon appears in the lower left corner, the data needs to be saved.

4.2.2 TOUCH SCREEN INPUT

BASIC INFORMATION

The LCD touch screen is setup with 2 different types of menus. The menus are designated by the color of their lower corner buttons. Orange screen buttons are for menus that are common among all analyzer types. Blue screen buttons are menus that are specifically for the analyzer type currently being accessed by the OIT. Gray buttons are indicative of sub menu items or popup screens.

Note that the default analyzer screen has hidden screen buttons located in the lower corners.

To enter the common menus, simply touch the Phase Dynamics logo on the default analyzer screen, or press the SELECT button while the default analyzer screen is displayed.

There are two types of data objects - indicators and parameter inputs. Indicators are outlined in blue and usually have proper case for their titles. Parameters and settings are outlined in yellow and their titles are usually upper case.

TYPICAL MENUS

PHASE DYNAMICS	Startup Screen This is the first screen that is displayed upon power- up. While displaying this screen, the OIT will poll the analyzer for its mode. Once the mode has been retrieved, the OIT will automatically go to the appro- priate main screen for that analyzer mode.
PHASE DYNAMICS LOW Range Analyzer	 Typical Default Analyzer Main Screen This is the main screen for the Low Range Analyzer. The main screen display varies depending upon the analyzer mode. To enter the common menus, simply touch the Phase Dynamics, Inc. logo or press SELECT.
Water Cut 4.567 % Temperature 23.4 °C	The standard touch screen navigation buttons are hidden on the lower corners. Pressing MENU will display the next menu.
	The floppy disk icon indicates that the configuration has been changed. Simply touch the icon and it will take you to the SAVE CONFIGURATION menu.
	A red exclamation point icon may appear on the bottom center of the screen when there is an error. Simply touch the icon to go directly to the DIAGNOSTICS menu. This is also a hidden button and may be pressed at any time.

Typical Detailed Analyzer Screen

This is the detailed screen for the Low Range Analyzer.

The blue touch screen navigation buttons allow the user to cycle through the menus. Pressing MENU will display the next menu. Pressing SELECT will cycle through all of the trend screens.

A red exclamation point icon may appear on the bottom center of the screen when there is an error. Simply touch the icon to go directly to the DIAGNOSTICS menu. This is also a hidden button and may be pressed at any time to enter the DIAGNOSTICS menu.

The small graph icons to the right of the indicators will open the corresponding trend screen.

Typical Trend Display

The 1024 point logging is started upon power-up of the OIT.

Exit the trend screen by pressing the lower left button. Pressing MENU will exit the trend screen and go to the next menu.

Pause **ALL** logging of trend data by pressing the lower right corner PAUSE button. This will turn all buttons red and stop data collection. The left and right scroll buttons are active during the pause. When finished, press the PAUSE button again, to resume data collection.

The magnifying glass icon will display a 3-minute window instead of a 3-hour window.

DIAGNO	OSTICS	
ERROR CODE	DAC 1	2.3456 V
1004	DAC 2	2.3456 V
1234	ADC 1	2.3456 V
	ADC 2	2.3456 V
	ADC 3	2.3456 V
	ADC 4	2.3456 V
	INTTMP	23.4 °C
		TEST

Diagnostics Screen

This is the main screen for DIAGNOSTICS.

Navigating right will enter the alarm status indicator screens where each alarm may be viewed and acknowledged individually.

Navigating left will go back to the previous screen.

The bottom center button may be green or red in color. If it is red, touching it or pressing ENTER will clear all the diagnostic flags at once.

The value on the left is the main DIAGNOSTICS word.

The internal ambient temperature, DAC, and ADC values are displayed on this screen for technical use.

The TEST button initiates a full self-test of the hardware. Communications and other processes are halted until the self-test is completed.

Individual Alarm Indicator/Acknowledge Page 2 This is the second individual diagnostics screen.

Navigating left will go back to the first individual diagnostics screen.

The bottom center button may be green or red in color. If it is red, touching it or pressing ENTER will clear all the diagnostic flags at once.

Each status indicator may be green or red. Touching a red indicator will acknowledge the error.

Typical Parameter Input

Parameter input fields are yellow. Simply touch the indicator to display a keypad. Data can then be entered. The unit will ignore the data if the input bounds are exceeded.

The button on the top right indicates the currently displayed temperature unit. This button will toggle between $^{\circ}F$ and $^{\circ}C$.

The LOCK button, shown at the bottom center of the screen, indicates the write-protection status. Touch this button to enter the SECURITY screen to lock, unlock, or to change the password of the current port.

Typical Stream Parameter Input

The parameter input fields are yellow. Simply touch the indicator and a keypad will popup. Data can then be entered or canceled. The unit will ignore the data if the input bounds are exceeded.

There are 60 streams and each stream configuration may be changed or viewed by entering the STREAM number in the top parameter field.

The CAL button enters the automatic calibration menu if the analyzer is in the appropriate phase with no range errors.

04/01/2004 INFORMATION 10001 MODE 1 LU1R2010EX010 MEAS 2000 A INI F H 46 40 ANALOG 10001 2000-00055-000 D DIGITAL 10001 2000-00054-000 OSC 10001 2000-00057-001 AUX 10001 2000-00056-000 5 # RESETS © Image: Constraint of the second	 Analyzer and Measurement Section Information This screen contains important factory information such as: MODULE ID (top right corner) Calibration Date (top left corner) Analyzer Mode (see MODBUS[®] appendix A) Part Number (next to MODE) Measurement Section Serial Number, Version, Factory Technician's Initials, Firmware Version, and Hardware Version Board Serial Numbers and Descriptions The number of times that the unit has been re- set A zoom feature that shows a typical diagram of the measurement section (based off of the part number)
UTILITIES	Utilities Menu This menu
	1. DIAGNOSTICS – opens the main diagnostics
TIME &	page
31 DATE	2. ALARM LOG – opens the alarm history page
	ing unlocking or changing the password for the
	OIT port
ALARN LOG SELF-	4. TIME & DATE – changes the time and date in
IE515	the OIT
DATA	analyzer will perform self tests automatically
LOGGING	6. DATA LOGGING - configures the internal data
	logging
_	
Date/Time Message Basevery	Alarm Log The alarm log is started upon nowor up of the OIT
05/10 09:43 Ext Memory 05/10 09:43	Alarm status is indicated in red and when cleared or
05/10 09:43 EXE Fail 05/10 09:43	acknowledged it is indicated in blue.
05/10 09:43 Timer Fail 05/10 09:43	Tauch correct encretion:
05/10 09:43 Flash Mem 05/10 09:43	SEL enables the selection mode
05/10 09:43 Flash WP 05/10 09:43	Press the UP and DOWN buttons to scroll through
05/10 09:43 VAR Bounds 05/10 09:43	the alarm list.
05/10 09:43 VAR Unit 05/10 09:43	The magnifying glass opens an ALARM DETAIL screen where the alarm can be acknowledged
05/10 09:43 Int Memory 05/10 09:43	DEL deletes the selected acknowledged log entry.
	ALL deletes all of the acknowledged log entries.
	MSV/E Operation:
	SELECT will cycle through the active alarm detail.
	MENU will exit.

4.2.3 OIT BATTERY

If the OIT has been powered off for an extended period of time, the internal battery will discharge and the OIT will lose its settings. Once powered back on, the battery will begin charging.

4.2.4 OIT LCD CONTRAST ADJUSTMENT

The LCD contrast is adjustable. The OIT also temperature compensates the contrast setting.

To adjust the contrast setting, press the top right and top left corners of the touch screen simultaneously. Then select the Adjust Contrast menu item in order to change the contrast settings.

The contrast setting is stored in battery-backed memory within the OIT.

4.2.5 OIT LANGUAGE SELECTION

There are four languages available for the OIT. They are English, Spanish, Russian, and Chinese. The language menu is the second menu option among the common menus. Press and hold SELECT or simply touch the Phase Dynamics logo on the main display page to enter the common menus. Press MENU or touch the lower right corner of the screen to advance to the language menu. Select the language by either using the SELECT and ENTER buttons or simply touch the desired language on the screen. The language setting is stored in battery-backed memory within the OIT.

4.2.6 DEMONSTRATION MODE

The demonstration mode is an excellent tool to demonstrate the various modes and operation of the OIT and the Phase Dynamics Analyzer family.

Upon power-up, the DEMO MODE will begin a slide-show style presentation indicating the various features of the OIT and analyzer.

4.2.6.1 MSVE

- SELECT will open the DEMO SELECTION MENU.
- MENU will advance the slide-show a page at a time.

4.2.6.2 TOUCH SCREEN

- Touching the lower left corner will open the DEMO SELECTION MENU.
- Touching the lower right corner will advance the slide-show a page at a time.

4.2.6.3 DEMO SELECTION MENU

Select the type of analyzer that you wish to demonstrate. If no selection is made within 4 seconds, the slide-show will resume. Selecting a demonstration mode will force the analyzer to simulate with actual functioning menus. To exit, simply hold the MENU button or press the lower left corner of the first common menu screen to go back to the slide-show.

5. MENU CHARTS AND DIAGRAMS

MENU	DESCRIPTION						
MAIN	Displays watercut, oscillator parameters, user temperature, emulsion						
	phase, and error messages. Press SELECT to display other main						
	screens such as Flow Computer and Density data.						
UNLOCK WRITE-PROTECT	This will display if the write-protect display mode dip switch is set.						
	Enter the correct password to unlock.						
CHANGE WPROT PASSWORD	This screen will display when unlocked. Enter a new password here						
	for disabling write-protect.						
CHANGE TECH PASSWORD	This screen will display when unlocked. Enter a new password here						
	for accessing technician mode from other menus.						
INFORMATION	Displays measurement section information such as TAG, model						
	number code, and serial number. Press SELECT to edit the TAG						
	name.						
DIAGNOSTICS	Displays the diagnostics words. Press ENTER to clear all. Press						
	SELECT to edit a diagnostics mask to ignore errors.						
TIME & DATE	Displays current time and data. Press SELECT to edit in HH:MM:SS						
	(24 hour format) and MM/DD/YY.						
WATER CONTENT AVERAGING	Press SELECT to edit the number of watercut samples to average.						
STREAM SELECT	Determines which stream configuration to use. Press SELECT to						
	edit.						
TEMPERATURE UNIT	Allows the user to change the main screen temperature unit code.						
TEMPERATURE ADJUST	Input a value here to offset the user temperature value.						
CAPTURE SAMPLE (OIL PHASE)	When in the oil phase, this captures and saves the data record for						
	future calibration using the "CALIBRATE OIL PHASE" menu.						
CALIBRATE OIL PHASE	Enter the watercut corresponding to the captured sample. If no sam-						
	ple is stored, the current readings will be used, if in the oil continuous						
	phase.						
CAPTURE SAMPLE (WATER PHASE)	When in the water phase, this captures and saves the data record for						
	future calibration using the "CALIBRATE WATER PHASE" menu.						
CALIBRATE WATER PHASE	Enter the watercut corresponding to the captured sample. If no sam-						
	pie is stored, the current readings will be used, if in the water con-						
	Inuous phase.						
OIL ADJUST							
	This is the offset value added to the watersut when in the water con						
WATER ADJ031	tinuous phase						
	The salinity for the water-continuous phase calculations						
WATERCUTLOW ALARM	The watercut high and low alarm values are for indicating process						
WATERCUT HIGH ALARM	high and low status in the diagnostics						
	Oil index is a value added to the oil oscillator frequency						
	Water index is a value added to the water oscillator frequency						
	The oil low and high frequencies are used to determine the bounds at						
	which reflected power will be measured.						
WATER LOW FREQUENCY	The water low and high frequencies determine the ounds for calculat-						
WATER HIGH FREQUENCY	ing with the water continuous oscillator						
OIL P1	A threshold line is calculated with P1 (V/MHz) and P0 (V) to deter-						
OIL P0	mine the phase and/or rollover condition of the oil oscillator.						
COMM PORT SETUP	The communications ports can be setup here. Press SELECT to se-						
	lect which port to change, and press ENTER to go to its menu. Many						

Table 5.1 - Technician Menu (4-Line LCD)

	communication parameters can be setup here.
RELAY SETUP	Each relay can be setup for various modes. Masking of variable
	status, diagnostics status, and even variable value comparisons are
	available.
ANALOG INPUT SETUP	The analog input ports can be setup here. Press SELECT to select
	which analog input to change, and press ENTER to go to its menu.
	Many parameters can be setup here.
ANALOG OUTPUT SETUP	The analog output ports can be setup here. Press SELECT to select
	which analog output to change, and press ENTER to go to its menu.
	Many parameters can be setup here.
DENSITY CORRECTION	Enables and configures density correction.
OIL CALCULATION MODE	Determines which curve set to use for watercut calculation.
FLOW COMPUTER SETUP	Configures the flow computers. There are 3 virtual flow computers.
	Flow computer 1 is often reserved for special functions such as den-
	sity correction or CCM modes.
RESTART	This menu will perform a software restart.
FACTORY DEFAULTS	This menu will copy the factory configuration block to the user con-
	figuration block.

Table 5.2 - Normal Menu (4-Line LCD)

MENU	DESCRIPTION				
MAIN	Displays watercut, user temperature, emulsion phase, and error mes-				
	sages. Press SELECT to display other main screens such as Flow				
	Computer and Density data.				
UNLOCK WRITE-PROTECT	See table 5.1				
INFORMATION	See table 5.1				
DIAGNOSTICS	See table 5.1				
WATER CONTENT AVERAGING	See table 5.1				
STREAM SELECT	See table 5.1				
TEMPERATURE ADJUST	See table 5.1				
CAPTURE SAMPLE (OIL PHASE)	See table 5.1				
CALIBRATE OIL PHASE	See table 5.1				
CAPTURE SAMPLE (WATER PHASE)	See table 5.1				
CALIBRATE WATER PHASE	See table 5.1				
OIL ADJUST	See table 5.1				
SALINITY	See table 5.1				
GOTO TECHNICIAN MODE	This menu grants access to the technician mode when the correct				
	password is entered.				

Figure 5.1 - Common Menus (Touch Screen Input)

Figure 5.2 - Typical Analyzer Menus (Touch Screen Input)

Figure 5.3 - Common Menus (MSVE Input on Touch Screen)

Figure 5.4 - Typical Analyzer Menus (MSVE Input on Touch Screen)

6. DETAILED FUNCTIONAL DESCRIPTIONS

Following is a description of various operating routines for the Phase Dynamics analyzer and functional descriptions of each printed circuit board. The oscillator module is sealed and user access is not recommended. If the analyzer is opened, the warranty may be voided.

6.1 POWER-UP SYSTEM TESTS

Upon powering up, the system executes a series of self-tests. The user configuration CRC is verified for device integrity. If it fails, the factory backup configuration is checked and copied over the user configuration. If the factory CRC fails, the analyzer sets up basic default values in order to function. The SRAM is tested for bit failure.

After passing self-test the microprocessor initializes the data and peripherals. The software is interrupt driven and the main loop updates the LCD with the latest values and checks for any switches which have been pressed.

6.2 PERIODIC SELF TESTS

The major functional areas checked by the built-in tests are:

- program memory integrity (FLASH)
- configuration memory integrity (FLASH)
- internal microprocessor memory (INTRAM)
- data memory (EXTRAM)
- time base check

6.3 TYPICAL OPERATION

The microprocessor reads the counters and computes a raw frequency from the microwave oscillator. The fluid temperature is measured. The temperature-compensated water content value is then calculated by using the coefficients, which were determined during calibration and stored in FLASH memory.

6.4 POWER BOARD

All power is routed through this board.

- fuses and surge protection for all external connections
- power conditioning and distribution

6.5 PROCESSOR BOARD

A Digital Signal Processor (DSP) performs calculations and controls the hardware. A Complex Programmable Logic Device (CPLD) is programmed to measure frequency and control various logic functions related to the hardware.

The processor board functions include:

- status and communication indicator lights
- oscillator control
- oscillator heater enable
- communication protocols
- frequency measurement
- read ADC conversions for input voltages
- set DAC for output control voltages such as the tuning voltage

44

- process and RTU calculations
- RTU functions
- diagnostic functions

Table 6.1 - Port Default Settings

Parameter		HART®	IrDA	MODBUS [®] (strict rules)
Slave Address	1	0	1	-
Baud Rate	9600	1200	115200	-
Number of Bits	8	8	8	8
Parity	None	Odd	None	-
Number of Stop Bits	1	1	1	1
End of Transmission Delay	10.0	1.0	10.0	3.5
Transmit Prefix	1.5	1.5	1.5	0.0
Transmit Suffix	0.0	1.0	0.0	0.0
Network Watchdog	50.0	2.0	50.0	1.5

Table 6.2 - Definitions of timing parameters (in byte-times):

End of Transmission Delay	The time from the end of transmission that the receiving device must wait until it
	can begin its response. (Response Delay)
Transmit Prefix	The time that the transmitter holds the network at a STOP (1) condition prior to
	sending the data.
Transmit Suffix	The time that the transmitter holds the network at a STOP (1) condition after
	sending the data.
Network Watchdog	The time to reset the incoming packet state if no data has been received. In-
_	coming data will continually reset this timer.

6.5.1 BOOTLOADER

The boot loader is a small program that looks for special programming commands during the first 5 seconds after power-up. It can read, write, and configure the analyzer module with commands and data. The boot loader can read and write to anywhere within the FLASH memory; using the Intel hex file format. The typical functions of the boot loader are:

- store the main program into FLASH memory
- clear the configuration
- restore the factory configuration
- set the Phase Dynamics, Inc. ESN (one time only)

An external watchdog should cause a reset in the event that the processor "hangs". The watchdog is enabled by turning ON: 66-S2.1. The CPLD may disable the watchdog for time-extensive events such as programming the FLASH memory.

6.6 COMMUNICATIONS BOARD

All RS-485, BELL-202, and IrDA traffic is handled by the communications board.

6.7 ANALYZER BOARD

The analyzer board has:

- (1) pulse input channel
- (1) analog input channel (4-20mA)

- (1) analog output channel (4-20mA)
- standard oscillator control and measurement circuitry

6.8 ANALOG I/O BOARD

The analog input /output board has:

- (2) pulse input channels
- (4) analog input channels (4-20mA)
- (4) analog output channels (4-20mA)

6.9 MICROWAVE OSCILLATOR

The measurement section and the analyzer are considered a MATCHED SET. Information derived about the measurement section and oscillator during calibration is stored in FLASH memory on the processor board.

IMPORTANT

THE OSCILLATOR MODULE SHOULD NEVER BE REMOVED FROM THE MEASUREMENT SECTION!

The microwave oscillator is heated to maintain an internal temperature of approximately 70°C, for stable operation. It has no output buffer amplifier or isolation circuit, which are typically used in oscillator applications.

7. CALIBRATION PROCEDURE

7.1 FACTORY CALIBRATION - LOW & MID RANGE ANALYZERS

Each Phase Dynamics Analyzer is carefully calibrated at the factory prior to delivery. A precisely controlled flow loop is used to determine the unit's frequency response as a function of water content. This response determines the coefficients used to compute water content from the measured frequency. The calibration flow loop is also used to measure the effects of temperature on the system. This provides for a temperature compensated water content calculation. Appendix E includes a comparison of various laboratory methods for the determination of water in crude oil.

7.2 FIELD CALIBRATION - LOW & MID RANGE ANALYZERS

Field conditions may differ from those simulated in the factory. The analyzer may require field adjustment to compensate for these differences. A worksheet is included to assist in field calibration of the analyzer. The recommended procedure for field calibration of the analyzer is as follows:

7.2.1 MANUAL CALIBRATION

- 1. Collect an appropriate sample of crude oil and water for analysis. The sample must represent the crude oil and water flowing through the measurement section.
- 2. While collecting the sample, note and record the analyzer's displayed Water Cut value.
- 3. Record the fluid temperature displayed by the analyzer, Oil Adjust , and Oil Index values.
- 4. Measure the water content of the sample via some laboratory method (distillation or titration recommended).
- 5. Compare this result to the analyzer's displayed value.
- 6. Repeat the above steps of collection and analysis for a few samples and a range of water contents.

Calculate the difference for each pair of displayed and measured water contents. Typically, the difference will be constant for all the samples.

Enter the Oil Adjust value needed so that the displayed water content is equal to the laboratory-measured water content. When done, save the configuration.

If the difference between the displayed and laboratory-measured values vary appreciably for several samples, collect and analyze enough samples to be confident that the difference is not constant. If necessary, call Technical Support for assistance.

7.2.2 AUTOMATIC CALIBRATION

The oil calibration routine is accessed through the OIT input or by updating the appropriate registers with one of the protocols. The OIT stream menu will allow access to the Oil Calibration menu if the analyzer detects the oil continuous emulsion phase.

- 1. Command the analyzer to CAPTURE data.
- 2. Meanwhile, collect an appropriate sample of crude oil and water for analysis. The sample must represent the crude oil and water flowing through the measurement section.
- 3. When the analyzer has completed its sampling, command the analyzer to SAVE the configuration.
- 4. Measure the water content of the sample via some laboratory method (distillation or titration recommended).
- 5. Enter the measured value into the Water Cut field and the analyzer will automatically calculate the Oil Adjust based on the data when the sample was taken.
- 6. Save the configuration.

7.3 FACTORY CALIBRATION - FULL & HIGH RANGE ANALYZERS

Each Phase Dynamics Analyzer is carefully calibrated at the factory prior to delivery. A precisely controlled flow loop is used to determine the unit's frequency response as a function of water content. This response determines the coefficients used to compute water content from the measured frequency. For water external emulsions, dissolved salts affect the analyzer's response. The instrument is factory calibrated over a wide range of dissolved salts using Sodium Chloride (NaCl). In the field, dissolved salts are determined by several dissolved solids including barium, bicarbonate, calcium, carbonate, chloride, iron, magnesium, potassium, sodium, sulfate, etc. The calibration flow loop is also used to measure the effects of temperature on the system. This provides for a temperature compensated water content calculation. Appendix E includes a comparison of various laboratory methods for the determination of water in crude oil.

7.4 FIELD SALINITY CALIBRATION - FULL & HIGH RANGE ANALYZERS

Since the load-pull system is sensitive to dissolved salts for water continuous emulsions, it is very important to field calibrate for water salinity at any appropriate time. These times may include new well, new product, new formation, change in season, change in background of water, process change resulting in a different water salinity, etc.

IMPORTANT

For optimum performance, it is IMPERATIVE that the salinity calibration routine be executed properly.

7.4.1 AUTOMATIC CALIBRATION

The salinity calibration routine is accessed through the OIT input or by updating the appropriate registers with one of the protocols. The OIT stream menu will allow access to the Water Calibration menu if the analyzer detects the water continuous emulsion phase.

To calibrate for the current water salinity, pump through (or pour into) the measurement section a water sample representative of the produced water under test. It is recommended to complete the salinity calibration for the highest water content attainable. At a minimum, salinity calibration must be executed for water continuous emulsions.

- 1. Command the analyzer to CAPTURE data.
- 2. Meanwhile, collect an appropriate sample of crude oil and water for analysis. The sample must represent the crude oil and water flowing through the measurement section.
- 3. When the analyzer has completed its sampling, command the analyzer to SAVE the configuration.
- 4. Measure the water content of the sample via some laboratory method (distillation or titration recommended).
- 5. Enter the measured value into the Water Cut field and the analyzer will automatically calculate the Salinity based on the data when the sample was taken.
- 6. Save the configuration

The Salinity Calibration routine is used to compensate for the difference between the salinity compositions of the field water and the factory calibration water. The salinity of the water used during the factory calibration is determined by the amount of pure sodium chloride (NaCl) in water. In the field, the apparent salinity of the water is determined by several dissolved solid species including barium, bicarbonate, calcium, carbonate, chloride, iron, magnesium, potassium, sodium, sulfate, etc. The Salinity Calibration should be completed the first time a new stream ID is defined or when the composition of the field salinity has changed.

This routine calculates the Salinity based on the sodium chloride concentrations used in the factory calibration.

Each and every stream should be initially calibrated using the Salinity Calibration routine. Each stream ID will include a corresponding Salinity value.

7.4.2 AUTOMATIC CALIBRATION FOR TOUCH-SCREEN ONLY

1. Press STREAM (green) under ADJUSTMENTS screen.

ADJUST	MENTS
TEMPERATURE ADJUST	0.00 °F
PHASE HOLDOVER	◀ 3 ►
NUM OF SAMPLES	
<	

2. Next, choose WATER CAL (blue)

3. Command the analyzer to CAPTURE (yellow) data.

- 4. Meanwhile, collect an appropriate sample of crude oil and water for analysis. The sample must represent the crude oil and water flowing through the measurement section.
- 5. When the analyzer has completed its sampling, command the analyzer to SAVE the configuration by pressing the floppy disk icon.
- 6. Measure the water content of the sample via some laboratory method (distillation or titration recommended).
- 7. Enter the measured value into the WATER CUT field and the analyzer will automatically calculate the Salinity based on the data when the sample was taken.
- 8. SAVE and complete the salinity calibration by pressing the floppy disk icon.

Date: _____

Location:_____

Serial Number of Unit: _____ Method of Calibration: _____ Calibration Worksheet

ralio		<i>τ</i> ι										
												Sample ID
												Time
												Displayed Temp
												Displayed Water Content
												Measured Water Content
												Oil Adjust
												Oil Index
												Water Index
												Salinity

8. THEORY OF OPERATION - LOW RANGE ANALYZERS

The following sections describe, in detail, the specific operation of the Phase Dynamics load-pull system and how it is used to measure water content. The sections are separated into two main parts - one describing the fundamental behavior of the instrument to changing water content and one describing temperature effects.

8.1 DETAILED DESCRIPTION OF FREQUENCY RESPONSE

The load-pull system relates a measured oscillator frequency to water content. During factory calibration, coefficients are derived to relate the measured frequency to water content for a given temperature. The water content is calculated as follows;

Water content	=	O3 x (Frequency + Oil Index) ³
	+	O2 x (Frequency + Oil Index) ²
	+	O1 x (Frequency + Oil Index)

- + O0
- + Oil Adjust

where Frequency is the measured oscillator frequency,

O3, O2, O1 and O0 are the oil constants (O-constants),

Oil Index is a frequency index value, and

Oil Adjust is a linear offset value.

The factory default values for Oil Index and Oil Adjust are zero (0). In this case the above equation simplifies to; Water content = $O3 * Freq^3 + O2 * Freq^2 + O1 * Freq + O0$.

Figure 8.1 shows a typical factory calibration curve for constant temperature.

To compensate for differences between the factory calibration and actual process conditions, a linear offset factor, Oil Adjust, may be added to or subtracted from the computed water content. The effect of Oil Adjust is as shown in Figure 8.2.

Figure 8.1 - Linear Factory Calibration, Frequency versus Water Content

On rare occasions, it may be necessary to include a frequency index, Index, for improved accuracy. The effect of Index is as shown in Figure 8.3. Note: The preferred method for field calibration includes the use of Oil Adjust, as opposed to Index. However, Index is included to provide greater flexibility to the user, if needed.

The Phase Dynamics Water in Hydrocarbon Analyzer includes an operational feature which allows the instrument to determine an over range condition for the measured water content. The reflected power (Ref Pwr) signal from the oscillator module is measured and compared to a threshold value; it is a DC voltage indicative of the signal level reflected from the measurement section. Typically, the measured level will be above the threshold value when the measured water content is in range. For the over range condition, the reflected power level will be below the threshold value.

The reflected power threshold level (RP Threshold) may be frequency dependent and is given by; RP Threshold = P1 x (Frequency + Index) + P0

where Frequency is the measured oscillator frequency,

Index is the frequency index,

- P1 is the slope of the threshold curve, and
- P0 is the intercept of the threshold curve.

Figure 8.4 shows a typical reflected power threshold curve for the Phase Dynamics Analyzer.

8.2 TEMPERATURE COMPENSATION

Compensation for temperature effects must be included for best performance of the analyzer. Temperature changes the permittivity of most materials; this change in permittivity presents a changing load to the oscillator, which changes its frequency. Thus, without temperature compensation, a changing process temperature would cause changes in frequency, which would lead to errors in the calculated water content.

Temperature is measured by a probe located in one of the pipe saddles on a flow through, or in parallel to the measurement section on an insertion, and protrudes into the liquid stream.

Figure 16 shows the effect of temperature for a typical application. Temperature compensation is included by factory calibrating the analyzer over a range of temperatures. Coefficients relating frequency to water content are derived for each calibration temperature. For example, a unit calibrated at 15, 40, and 70 degrees Celsius will have three sets of O-constants, one set at each temperature.

Figure 8.5 - Effect of Temperature on Frequency

The calculated water content includes compensation for fluid temperature; no manual compensation by the user is necessary. The Temp Adjust feature is used to adjust the temperature probe's measured value to match the actual liquid temperature, if necessary.

For measured temperatures that are between factory calibration temperatures, a linear interpolation is used to compensate for temperature effects.

8.3 VIEWING THE O-CONSTANTS

For oil continuous emulsions, there is one set of O-constants for each factory calibration temperature. The values of the O-constants may not be changed but it may be useful to view them. Please refer to the MODBUS[®] Coefficient Table A.4.

9. THEORY OF OPERATION - FULL RANGE ANALYZERS

The following sections describe, in detail, the specific operation of the Phase Dynamics load-pull system and how it is used to measure water content. The sections are separated into two main parts - one describing the behavior of the instrument for oil continuous emulsions and one for water continuous emulsions.

9.1 DETAILED DESCRIPTION FOR OIL CONTINUOUS EMULSIONS

The load-pull system relates a measured oscillator frequency to a water content. For oil emulsions, the system is factory calibrated by injecting saltwater into a flowing volume of oil. Coefficients are derived to relate the measured frequency to the water content for a given temperature. The water content for oil continuous emulsions at a constant temperature is calculated as follows;

Water content	=	O3 x (Frequency + Oil Index) ³
	+	O2 x (Frequency + Oil Index) ²
	+	O1 x (Frequency + Oil Index)
	+	O0
	+	Oil Adjust

where Frequency is the measured oscillator frequency,

O3, O2, O1, and O0 are the oil constants (O-constants),

Oil Index is a frequency index value for oil continuous emulsions, and

Oil Adjust is a linear offset value for oil continuous emulsions.

The factory default values for Oil Index and Oil Adjust are zero (0). In this case the above equation simplifies to; Water content (Oil Phase) = $O3 * Freq^3 + O2 * Freq^2 + O1 * Freq + O0$.

Figure 9.1 shows a typical oil continuous calibration curve for constant temperature.

For improved accuracy, a linear offset factor, Oil Adjust, may be added to or subtracted from the computed water content. The effect of Oil Adjust is as shown in Figure 9.2. The value of Oil Adjust is most likely stream specific; each liquid stream may require its own Oil Adjust.

Figure 9.1 - Factory Calibration, Frequency vs. Water Content, Oil Continuous

Figure 9.2 - Effect of Changing Oil Adjust

At times, it may be necessary to include a frequency index, Oil Index, for improved accuracy. The effect of Oil Index is as shown in Figure 9.3. This parameter is NOT stream specific; this value is used in calculation of oil continuous water content for ALL streams.

FREQUENCY (MHz)

Figure 9.3 - Effect of Changing Oil Index

For oil continuous emulsions, the measured reflected power level is greater than the threshold power level (RP Threshold), which is related to the oscillator frequency (Frequency) and given by;

RP Threshold (Oil Phase) = O P1 * (Frequency + Oil Index) + O P0,

where Frequency is the measured oscillator frequency,

Oil Index is the frequency index,

O P1 is the slope of the threshold curve, and

O P0 is the intercept of the threshold curve.

This is true for measured frequencies greater than OilLo and less than OilHi. For all other frequencies, the emulsion is oil continuous.

Figure 9.4 shows the reflected power threshold curve for oil continuous emulsions.

For measured power levels above the threshold, the emulsion is oil continuous and the oil oscillator's frequency is measured and water content calculated. For measured power levels below the threshold, the system switches to the water emulsion oscillator and rechecks the power level to confirm the water continuous phase state.

9.2 DETAILED DESCRIPTION FOR WATER CONTINUOUS EMULSIONS

For water continuous emulsions, the system is factory calibrated over a wide range of temperature and salinity. Coefficients are derived to relate the measured oscillator frequency to water content for a given temperature and salinity. The water content (for a given temperature and salinity) is calculated as follows;

Water content

- W3 x (Frequency + Water Index)³
- + W2 x (Frequency + Water Index)²
- + W1 x (Frequency + Water Index)
- + W0
- + Water Adjust

where Frequency is the measured oscillator frequency,

W3, W2, W1, and W0 are the water constants (W-constants),

Water Index is a frequency value for water continuous emulsions, and

=

Water Adjust is a linear offset value for water continuous emulsions.

The factory default values for Water Index and Water Adjust are zero (0). In this case the above equation simplifies to;

Water content (Water Phase) = $W3 * Freq^3 + W2 * Freq^2 + W1 * Freq + W0.$

Figure 9.5 shows a typical set of water continuous calibration curves for a family of salinity values and one temperature. Each salinity curve is described by its own sets of W-constants; that is, the W-constants for one salinity are different than the W-constants for another salinity.

For field salinity values that are between the factory calibration values, linear interpolation is used to compensate for salinity effects.

For improved accuracy, a linear offset factor, Water Adjust, may be added to or subtracted from the computed water content. The effect of Water Adjust is as shown in Figure 9.6. The value of Water Adjust is most likely stream specific; each liquid stream may require its own Water Adjust.

The water continuous frequency index value, Water Index, is used to help compensate for the difference between the salinity compositions of the field water and the sodium chloride used during factory calibration. The Water Index value is calculated by the system during the Salinity Calibration and is stream specific. Each liquid stream will include its own Water Index value. The value of Water Index may be manually changed.

9.3 TEMPERATURE COMPENSATION

Temperature effects are significant for oil and water continuous emulsions. Compensation for temperature must be included for best performance of the analyzer. Temperature changes the permittivity of water significantly; this change in permittivity presents a changing load to the oscillator; which would change its frequency. Thus, without temperature compensation, a changing liquid temperature would cause a change in frequency; which would lead to errors in the calculated water content.

Temperature is measured by a probe located in one of the pipe saddles on a flow through, or in parallel to the measurement section on an insertion, and protrudes into the liquid stream.

Figure 9.8 shows the effect of temperature for oil continuous emulsions. Temperature compensation is accomplished by calibrating the load-pull system over a range of temperatures. Coefficients relating frequency to water content are derived for each calibration temperature. For example, a unit calibrated at 15, 38 and 60 degrees Celsius will have three sets of O-constants, one set at each temperature.

Figure 9.8 - Effect of Temperature on Frequency, Oil Continuous

Figure 9.9 shows the effect of temperature for water continuous emulsions for a given salinity. Temperature compensation is included by factory calibrating the load-pull system over a range of temperatures for several different salts. For example, a unit calibrated at 15, 38, and 60 degrees Celsius at 2% salinity will have three sets of W-constants, one set at each temperature. For 3% salinity, the same unit calibrated at 15, 38, and 60 degrees Celsius will have three more sets of W-constants, again, one set for each temperature.

FREQUENCY (MHz)

The water content includes compensation for fluid temperature; no manual compensation by the user is necessary. The Temp Adj. feature is used to adjust the temperature probe's reading, but does not affect the temperature compensation.

Linear interpolation is used to compensate for temperature effects for measured temperatures that are between factory calibration temperatures.

9.4 VIEWING THE O-CONSTANTS

For oil continuous emulsions, there is one set of O-constants for each factory calibration temperature. The values of the O-constants may not be changed but it may be useful to view them. Please refer to the MODBUS[®] Coefficient Table A.5.

9.5 VIEWING THE W-CONSTANTS

For water continuous emulsions, there is one set of W-constants for each combination of salinity and temperature tested during factory calibration. The values of the W-constants may not be changed but it may be useful to view them. Please refer to the MODBUS[®] Coefficient Table A.5.

10. THEORY OF OPERATION - MID RANGE ANALYZERS

Mid range analyzers act just like low range analyzers, except that they are designed for a wider range; from 0% water content to phase inversion. Phase inversion is when the fluid changes its emulsion phase and becomes water continuous. This typically occurs between 70% and 80% water content.

11. THEORY OF OPERATION - HIGH RANGE ANALYZERS

High range analyzers are designed to measure within the water continuous phase only. They act just like full range analyzers, except they do not make measurements when the fluid is oil continuous.

12. ANALYZERS

Analyzers are generic devices that can be developed into an actual product. Phase Dynamics, Inc. offers research analyzer tools for the user to develop his unique process. Upon completion of the research, the user may request Phase Dynamics, Inc. to generate a profile that contains the multi-variable coefficients for calculating the process values based on readings from the analyzer.

13. INSTRUMENT REPAIR AND SERVICE

13.1 ASSISTANCE AND FACTORY ADDRESS

Product maintenance agreements and other customer assistance agreements are available for this Phase Dynamics analyzer.

> Phase Dynamics, Inc. 1251 Columbia Drive Richardson, TX 75081 Voice: 972-680-1550 Fax: 972-680-3262

13.2 ELECTROSTATIC DISCHARGE (ESD)

CAUTION

Protect circuit boards and terminals from ESD at all times.

All of the printed wiring board assemblies contain electronic components, which are sensitive to electrostatic discharge. Components damaged by ESD greatly increase the likelihood of a system error or failure. Care should be taken to prevent damage from electrostatic discharge when working with the system. The technician should be wearing a ground strap. Boards removed from the system should be kept in anti-static bags.

13.3 MEASUREMENT SECTION AND ANALYZER

No field repair of the measurement section, oscillator, analyzer, or temperature probe should be necessary. If repair of these parts is needed, please consult Phase Dynamics.

13.4 RETURNING ITEMS TO THE FACTORY

Please telephone Phase Dynamics prior to returning any equipment for service or repair. A return merchandise authorization (RMA) number may be required prior to shipment. Please include the following information with returned items:

- 1. Company name, address, telephone number
- 2. Key contact name, address, telephone number, fax number, email address
- 3. Serial number of item(s) being returned
- 4. A completed copy of the Troubleshooting Worksheet
- 5. Return merchandise authorization (RMA) number (if required)

13.5 RETURNING THE ANALYZER AND MEASUREMENT SECTION

Please drain and clean the measurement section of any and all dangerous or hazardous materials before returning to the factory.

Pack the analyzer and measurement section in the original shipping carton. If the original carton is missing, contact Phase Dynamics.

Place a packing slip on the outside of the carton containing both the return authorization and the serial number.

13.6 TROUBLESHOOTING WORKSHEET

The next few pages contain the Troubleshooting Worksheets. Please complete the form prior to contacting Technical Support.

	Phase Dynamics, Inc.	RMA NUMBER	
PHASE DYNAMICS	Richardson, TX 75081	PDI CONTACT	
	Fax: 972-680-1550 Fax: 972-680-3262 techsupport@phasedynamics.com www.phasedynamics.com	OSCILLATOR SERIAL NUMBER	
		MEASUREMENT SECTION	
		SERIAL NUMBER	

TROUBLESHOOTING WORKSHEET

DATE		
COMPANY	PHONE	
CONTACT	FAX	
LOCATION	EMAIL	
LOCAL	CONTACT	
REP.	PHONE	

PROCESS-RELATED DATA

(For All Analy	zers)
Actual Process Value (Water Cut)	%
Process Value (Water Cut)	%
Process Temperature	□ °C □ °F
Oil P0 Oil P1	V V/MHz
Density	
Typical Flow Rate	
(For Low, Mid, & Full Ra	nge Analyzers)
Oil Frequency Low	MHz
Oil Frequency High	MHz
Oil Frequency	MHz
Oil Reflected Power	V
Oil Adjust	%
Oil Index	MHz

(For Full & High Rang	e Analyzers)
Actual Salinity	%
Salinity	%
Emulsion Phase	 □ Oil-Cont □ Water-Cont □ Other
Water - Oil Freq. Low	MHz
Water - Oil Freq. High	MHz
Water Frequency Low	MHz
Water Frequency High	MHz
Water Frequency	MHz
Water Reflected Power	V
Water Adjust	%
Water Index	MHz

INTERNAL DIAGNOSTICS

DIAGNOSTICS	Internal Temperature	°C
ERROR CODE/MSG		

RTD

Disconnect power and remove the Analyzer Board. Measure the RTD wires (P+,P1,P2,P3) from the analyzer with an ohmmeter.

1.	Measure P+ to P1.	Is it 0Ω?	□ YES	□ NO	Ω		
2.	Measure P2 to P3.	Is it 0Ω?	□ YES	□ NO	Ω		
3.	Measure P+ to P3.	Does it measure 100-200Ω	? 🗆 YES	□ NO	Ω		
Disconnect wire P+ from the terminal and connect an ammeter in series with it. Install the Analyzer Board and reconnect power.							
Measure the RTD current. Is it 0.200mA? \Box YES \Box NO mA If your meter cannot read less than 1mA, disconnect the RTD wires and place a 1000 Ω resistor across P+ and P							
and measure the voltage across the resistor. Is it 0.20V?							

POWER STATUS and RELAY INDICATORS

Connect power to the Analyzer.

 Indicate the status of the Power Indicator and Relay LEDs. (Place a check-mark in the box if ON and well-lit.)

 □ 3.3V
 □ 5V
 □ 15V
 □ Relay 1
 □ Relay 2

Motherboard Terminals – Measure with DC Voltmeter

		PRO	OBE	Measured		Expe	cted	
		+	-	Voltage	Vo	Itage	Range	
5Volt Power	12	29	30		+4.8	to	+5.2	V
15 Volt Power	12	27	28		+14.7	to	+15.3	V
Heater Power	12	25	26		+22.0	to	+28.0	V
Ground Sense	12	24	28		0.00	to	+0.40	V
V Incident	12	23	28		+0.20	to	+4.95	V
V Reflected	12	22	28		+0.20	to	+4.95	V
Oscillator Select	12	14	28		+1.25	to	+8.50	V
VTUNE	12	13	28		0.00	to	+12.5	V
EXTUNE	12	12	28		0.00	to	+15.0	V
Analog In #1 Power	12	7	9		+22	to	+28	V
Analog In #2 Power	1	9	11		+22	to	+28	V
Analog In #3 Power	1	12	14		+22	to	+28	V
Analog In #4 Power	1	15	17		+22	to	+28	V
Analog In #5 Power	1	18	20		+22	to	+28	V
DC+ to DC-	N/A	DC+	DC-		+22	to	+28	V
DC- to Earth	N/A	DC-	E		-28	to	+28	V
DC- to Chassis	N/A	DC-	С		-28	to	+28	V

DESCRIPTION OF THE PROBLEM:

NOTES:

_

14. TROUBLESHOOTING GUIDE

ERROR	DESCRIPTION	ACTION		
Reset Basics	The analyzer has detected an error in the User Configuration and the Factory Configuration. Basic defaults have been loaded for operability. ALL data shall be considered invalid.	Contact Technical Support.		
Reset	The unit has been reset, probably due to a power cycle.	If the condition persists, contact Tec nical Support.		
Process out of range	The process value has exceeded its bounds.	 Complete the Troubleshooting Worksheet. Check Oil Adjust, Water Adjust, and Salinity parameters. Check reflected power (OIL) and compare to the power threshold line OIL P1, P0 to determine if the analyzer has detected the correct emulsion phase. Check frequencies and compare to their boundaries. Contact Technical Support. 		
Temperature error	The temperature has exceeded its bounds.	Check RTD and RTD assembly.		
Frequency error	The frequency has exceeded its bounds.	 Complete the Troubleshooting Worksheet. Check frequencies and compare to their boundaries. Contact Technical Support. 		
Variable Unit	An invalid unit code is detected. Data may be invalid.	Contact Technical Support.		
Variable Bounds	A variable has exceeded its bounds. Data may be clipped or invalid.	Contact Technical Support.		
Timer Failed	A timer has failed to initialize, or its queue is full.	Contact Technical Support.		
Execute Failed	An execution event has failed, or its queue is full.	Contact Technical Support.		
FLASH Memory	FLASH memory has failed.	Contact Technical Support.		
Internal Memory	Internal memory has failed.	Contact Technical Support.		
External Memory	External memory has failed.	Contact Technical Support.		
ERROR	DESCRIPTION	ACTION		
--	---	---		
Scaling error	Unable to scale primary variable for current output loop.	Check endpoint values.		
Current Loop error	The loop current output does not cor- respond to the primary variable.	 Check HART address and if current loop is in fixed mode. Check for error conditions that may signal with current loop. 		
Salinity Calibration Over Range	The calculated salinity is greater than maximum.	Repeat Salinity Calibration.		
Salinity Calibration Under Range	The calculated Salinity is less than minimum.	Repeat Salinity Calibration.		
Salinity Calibration not Wa- ter Continuous	Fluid stream is oil continuous.	Repeat Salinity Calibration when water continuous.		
Salinity Time	Not enough time for adequate salinity sample.	Allow more time for data capture.		

15. GLOSSARY

TERM	DEFINITION
ADC	Analog to Digital Converter
bypass	a section of pipe that circumvents a restricted flow; by slipstreaming, in order to pass a representative sample for measurement
center rod	the main part of the measurement section that is connected directly to the microwave oscillator
CPLD	Complex Programmable Logic Device – a non-volatile device that can be reprogrammed to perform a variety of functions
CRC	Cyclical Redundancy Check - an error detection code for determining the validity of data
DAC	Digital to Analog converter
densimeter	a device that measures density or specific gravity
densitometer	 an instrument for determining optical or photographic density a device that measures density or specific gravity
dielectric constant	See relative permittivity.
dip switch	a set of small switches that are used for setting options on a circuit board
discrete-time signal	 a signal that has finite elements, each of which is separated by a time interval a representative signal that may be derived from a continuous-time signal by periodically sampling it with an ADC
DSP	Digital Signal Processor – a microprocessor designed especially for han- dling discrete-time signals
emulsifier	a surfactant that promotes the formation of an emulsion
emulsion	a suspension of small globules of one liquid in a second liquid with which the first will not mix
emulsion phase	a term for expressing which liquid surrounds the other within an emulsion
ESD	Electrostatic Discharge
ESN	Electronic Serial Number
EXTRAM	External RAM – memory that is located outside the microprocessor
extrapolate	to estimate values outside of a range, from known values within the range
FLASH	a type of memory that can be reprogrammed electronically

TERM	DEFINITION
FS30K	scaled data where 30000 represents the maximum bound and 0 represents the minimum bound of the variable
ground strap	a temporary connection to ground, worn by a technician for handling ESD sensitive components
HART	Highway Addressable Remote Transducer – a simple communications protocol for supervisory control and data acquisition
impedance	a measurement of the opposition to the flow of electric current – usually consists of resistance and reactance
incident power	a measure of power that is transmitted from the source
interpolate	to estimate a value between two known values
INTRAM	Internal RAM – memory contained inside the microprocessor
JTAG	Joint Test Action Group
LCD	Liquid Crystal Display
load	the burden on the oscillator, often expressed in terms of impedance
microwave	an electromagnetic wave, one millimeter to one meter in wavelength
MODBUS	a widely supported standardized communications protocol for supervisory control and data acquisition
MSVE	an abbreviation for MENU, SELECT, VALUE, and ENTER
oil adjust	offset value for the computation of the water content, in the oil continuous phase
oil continuous	an emulsion whereby the oil surrounds the water
oil external	See oil continuous.
oil index	frequency offset value for the oil oscillator
oil P0, P1	the parameters that represent a threshold line for the reflected power of the oil oscillator to determine the emulsion phase; P1 = the slope of the line, and P0 = the offset of the line
OIT	Operator Interface Terminal – an interface, usually local, that is used for supervisory control and data acquisition
oscillator load-pull	the property where the oscillator will change frequency based on changes in the load
permittivity	a measure of the ability of a substance to resist an electric field
phase	See emulsion phase.

TERM

DEFINITION

reflected power	a measure of power that is reflected back from the load to the source	
relative permittivity	a ratio of permittivity with respect to the permittivity of a vacuum	
RTD	Resistance Temperature Detector – operates on the principle of the change in electrical resistance in wire as a function of temperature	
RTU	Remote Terminal Unit	
salinity	the ratio of the mass of salt to the mass of water that it is dissolved into	
SCADA	Supervisory Control and Data Acquisition	
seal plug	the plug on the end of the center rod that seals it to the measurement section	
shorting plug	a termination plug at the end of the measurement section that connects to the center rod	
slipstream	 the area of reduced pressure behind an obstruction in a moving fluid See <i>bypass</i>. 	
SRAM	Static RAM – memory used by the microprocessor	
stream	the liquid flow that is being measured	
surfactant	a surface-active substance	
UART	Universal Asynchronous Receiver/Transmitter	
watchdog	a timer that restarts a process when it times out, a dead-man's switch	
water adjust	offset value for the computation of the water content, in the water continuous phase	
water continuous	an emulsion whereby the water surrounds the oil	
Water Cut	water content, often represented in percent	
water external	See water continuous.	
water index	frequency offset value for the water oscillator	

APPENDIX A

A.1 MODBUS® RTU

The Phase Dynamics Analyzer can communicate with MODBUS[®]-compatible hosts in a multi-drop RS-485 2-wire network. This appendix specifies the mapped addresses for the available data types, the implemented function codes, diagnostics, and other operational characteristics within the Phase Dynamics Analyzer.

Valid Function Codes	Address (Data) Type	Access	Description
01, 05, 15	Coil	Read/Write	Single ON/OFF Bit (Boolean)
02	Discrete Input	Read-Only	Single ON/OFF Bit (Boolean)
03, 04, 16	Floating-Point & Long Integer Register	Read-Only & Read/Write	Single Precision IEEE 754 Floating-Point Format or Long Integer Format using two consecutive 16-bit Reg- isters
04	Input Register	Read-Only	Integer Format using a single 16-bit Register
03, 06, 16	Holding Register	Read/Write	Integer Format using a single 16-bit Register
03, 04, 06, 16	ASCII Characters	Read-Only & Read/Write	Two ASCII Characters Packed in a single 16-bit Register

Coils, Discrete Inputs, and Registers may use the same address. The Function Code will determine which type of data is to be accessed.

A.2 FLOATING-POINT / LONG INTEGER FORMAT

All floating-point register pairs are in the IEEE 754 Floating-Point Format. The standard byte transmission order is high to low per the following table:

A	В	С	D
SEEE EEEE	EMMM MMMM	MMMM MMMM	MMMM MMMM

A different byte transmission order can be requested by adding an offset to the floating-point and long integer register pairs that are to be accessed. The following table describes the offsets and the associated byte transmission orders:

REGISTER OFFSET	BYTE TRANSMISSION ORDER	DESCRIPTION
0	A B C D	IEEE 754 Floating-Point Format Standard
2000	CDAB	IEEE 754 Floating-Point Format Word-swapped
4000	DCBA	IEEE 754 Floating-Point Format Reverse
6000	BADC	IEEE 754 Floating-Point Format Byte-swapped
8000	ABCD	Scaled Long integer Standard

A.3 INTEGER / ASCII BYTE-PAIR FORMAT

All word and ASCII byte-pair registers are transmitted high byte then low byte (AB). Integers are scaled, when appropriate. The scale factor is listed in the table.

A.4 ANALYZER MODES

The analyzer mode instructs the analyzer how to operate. The OIT reads this mode value and automatically displays the appropriate menu for the analyzer.

TYPE	Code
Low Range	0
Full Range	1
Analyzer	2
Mid Range	3
High Range	4
Gas Analyzer	5
ССМ	6

A.5 DIAGNOSTICS REGISTER BIT DEFINITIONS

Table A.1 -	DIAGNOST	ICS BITS					
15	14	13	12	11	10	9	8
Reset	Reset	Process	Process	Temp	Temp	Frequency	Frequency
Basics		Hi	Lo	Hi	Lo	Hi	Lo
7	6	5	4	3	2	1	0
Internal	VAR	VAR	FLASH	FLASH	Timer Failed	Execute	External
Memory	Unit	Bounds	Protected	Memory	Falled	Falled	wemory
DIAGNOSTIC	CS FLAG	DES	CRIPTION	I	I	I	
Reset Basics	i	The tory data	analyzer has d Configuration. shall be consid	letected an err Basic default dered invalid.	or in the User ts have been l	Configuration loaded for ope	and the Fac- rability. ALL
Reset		The	unit has been i	reset, probably	v due to a pow	er cycle.	
Process High	ı	The	process value	has exceeded	its upper bour	nd.	
Process Low		The	process value	has exceeded	its lower boun	ıd.	
Temperature	High	The	temperature ha	as exceeded it	s upper bound	l.	
Temperature	Low	The	temperature ha	as exceeded it	s lower bound		
Frequency H	igh	The	frequency has	exceeded its u	upper bound.		
Frequency Lo	w	The	frequency has	exceeded its I	ower bound.		
Internal Mem	ory	Inter	Internal memory has failed its check routine.				
Variable Unit		An invalid unit code is detected. Data may be invalid.					
Variable Bou	ounds A variable has exceeded its bounds. Data may be clipped or invalid.				nvalid.		
FLASH Write	-Protected	A write-protect error occurred while attempting to write to FLASH memory.				SH memory.	
FLASH Mem	ory	FLAS	FLASH memory has failed its check routine.				
Timer Failed		A tim	A timer has failed to initialize, or its queue is full.				
Execute Faile	ed	An e	xecution event	has failed, or	its queue is fu	II.	
External Men	nory	Exte	rnal memory h	as failed its ch	eck routine.		

A.6 DIAGNOSTICS ERROR CODE

The most recent DIAGNOSTICS ERROR CODE remains until it is cleared.

Table A.2 - DIAGNOSTICS ERROR CODES

ERROR	DESCRIPTION
0	No error
1	Frequency error
4	User Temperature is out of range
5	Scaling error – cannot scale current output
6	Water Cut over range
8	FLASH failure
9	INTERNAL RAM failure
10	EXTERNAL RAM failure
11	Water Cut under range
15	Current Loop error
16	Reset Basics
21	Salinity Time
22	Salinity Calibration over range
23	Salinity Calibration under range
24	Salinity Calibration not water continuous
25	Temperature under range
26	Temperature over range
34	Oil Calibration not oil continuous

A.7 SAVING THE USER-CONFIGURATION

Notes:

- 1. Saving the configuration degrades the FLASH memory.
- 2. Saving ANY data will cause the ENTIRE configuration to be stored.
- 3. All auto-saves will save the ENTIRE configuration. There is, however, no Auto-save mode for the Coefficient Table. To save it, either write to an auto-save register, or write to the "Save Configuration" coil.
- 4. Locking and unlocking the device is considered to be an auto-save.

Upon completion of the setup, the user MUST save the configuration. There are three methods available to accomplish this:

- 1. Since all configuration data is updated in RAM, the unit will perform with the parameters as they are changed (except for the communications setup). However, upon reset, these parameters revert to their saved setting. To save the changes, write to the *"Save Configuration"* coil.
- 2. Sometimes a user will only need to update a few items. In most cases, the AUTOSAVE mode can be used. Simply add the appropriate offset to the address and your entire configuration will be automatically saved upon writing to that register. Care must be taken as to not use this too frequently because it will degrade the FLASH memory. Reading the offset registers will not cause an automatic save of the configuration.
- 3. An alternate AUTOSAVE mode is available for use with long integer or floating-point register pairs. The *"Automatic Save on Pair Boundary"* mode causes data to be saved upon write to the upper register boundary. For example, 00011..00012 is the register pair for Salinity. To automatically save this register, simply add 1 to the register address to read/write 00012..00013. This will only cause a boundary shift, and will not affect neighboring registers. If the *"Automatic Save on Pair Boundary"* mode is not set for the port, an address error will occur. Reading the offset registers will not cause an automatic save of the configuration.

|--|

ТҮРЕ	OFFSET
Integer	10000
Floating-Point / Long Integer	10000, 1 [*]
Discrete IO / Coils	10000

*This mode requires setting the "Automatic Save on Pair Boundary" coil for the corresponding port.

A.8 WRITE-PROTECTION

Notes:

1. Upon lock or unlock, the configuration will be automatically saved!

The factory default code is 1234.

To unlock, simply enter the password into register 49990.

The Lock status bit 00050 reflects the current lock status.

To lock, simply write a 1 to the Lock status bit.

To change the password, the unit must be unlocked.

The password is stored in register 49980.

The password cannot be read.

There is a 10-second lockout if a wrong password is detected.

The FACTORY MODE unlock is limited to factory use and is not available to the user.

A.9 CALIBRATION WITH MODBUS

The Phase Dynamics Analyzer has two automatic-calibration modes. These modes allow the user to enter the measured water content to automatically adjust the parameters.

Prior to automatic-calibration, the user must take a sample and set the appropriate data-capture coil (Oil/Water). This captured data will be used later when the current water content value is entered directly into the Calibrate Oil/Water registers. If this is not done first, the current measurements will be used instead. The oil calibration affects the oil adjust and the water calibration affects the salinity. These values can also be adjusted manually, if desired. It is recommended that the configuration be saved upon completion of a capture.

ADDRESS (ABSOLUTE)	SCALE	U	F	DESCRIPTION	
40001	1			Serial Number – Measurement Section	
40002	1	\checkmark	✓	Diagnostics	
40003	1	\checkmark	✓	Extended Diagnostics	
40004	1	\checkmark	✓	Diagnostics Error Code	
40005	1	\checkmark	✓	Diagnostics Message Code	
40006	100			Process Value (Water Content)	
40007	10			Process Temperature	
40008	10			User Temperature	
40009	1			Emulsion Phase	
40010	1	\checkmark	\checkmark	Stream Select	
40011	100	\checkmark	\checkmark	Salinity	
40012	100	\checkmark	\checkmark	Oil Adjust	
40013	100	\checkmark	\checkmark	Water Adjust	
40014	1	\checkmark	✓	Unit Code – Temperature	
40015	1	\checkmark	✓	Mode - Oil Calculation	
40016	1	\checkmark	\checkmark	Mode - Density Correction	
40017	1	\checkmark	✓	Density Correction Mode Modbus Master Port Select	
40018	1			Timer Counter	
40019	1	*	*	Mode – Demo Analyzer	
40020	1		✓	Mode – Analyzer	
40021	1			Manufacturer ID	
40022	1			HART Command Revision	
40023	1			HART Transmitter Revision	
40024	1			Firmware Version	
40025	1			Hardware Version	
40026	1	\checkmark	✓	Number of Samples to Average	
40027	1		\checkmark	Oil Phase Calculation Oscillator Select	
40028	1		\checkmark	Water Phase Calculation Oscillator Select	
40029	1	\checkmark	\checkmark	NaN Value for Integer	
40030	1			Power Cycle Counter	
40031	1	\checkmark	\checkmark	Mask - Diagnostics	
40032	1	\checkmark	\checkmark	Mask - Extended Diagnostics	
40091	FS30K			Frequency – Oil Oscillator	
40092	FS30K			Incident Power – Oil Oscillator	
40093	FS30K			Reflected Power – Oil Oscillator	
40094	FS30K			Frequency – Water Oscillator	
40095	FS30K			Incident Power – Water Oscillator	
40096	FS30K			Reflected Power – Water Oscillator	
40097	FS30K			Temperature	
40098	FS30K			Water Content	
42101	1	\checkmark	\checkmark	[1] Port – Slave Address	
42102	0.01	✓	✓	[1] Port – Baud Rate	
42103	1	✓	✓	[1] Port – Parity	
42104	100	✓	✓	[1] Port – EOT Delay	
42105	100	✓	✓	[1] Port – Prefix	
42106	100	✓	✓	[1] Port – Suffix	
42107	100	✓	✓	[1] Port – Watchdog	
42108	1	\checkmark	\checkmark	[1] Port – Number of Bits	

Table A.4 - MODBUS[®] INTEGER TABLE

421001 \checkmark \checkmark (1) Port – Stop Bits421101 \checkmark \checkmark (1) Port – Timeout421111 \checkmark \checkmark (1) Port – Timeout42113.421241 \checkmark \checkmark (2) Port42132.42124 \checkmark \checkmark (2) Port42137.42128 \checkmark \checkmark (3) Port42137.42148 \checkmark \checkmark (4) Port440011 \checkmark \checkmark 440021 \checkmark Capture Oil – Current Sample440021 \checkmark Capture Water – Number of Oil Oscillator Samples440011 \checkmark \checkmark 440121 \checkmark Capture Water – Number of Oil Oscillator Samples44013.440181 \checkmark Capture Water – Current Sample480011 \checkmark \checkmark 480021 \checkmark \checkmark 480031 \checkmark \checkmark 480041 \checkmark \checkmark 480051 \checkmark \checkmark 480061 \checkmark \checkmark 480071 \checkmark \checkmark 480081 \checkmark \checkmark 480091 \checkmark \checkmark 480091 \checkmark \checkmark 490061 \checkmark \checkmark 490071 <th>ADDRESS (ABSOLUTE)</th> <th>SCALE</th> <th>U</th> <th>F</th> <th>DESCRIPTION</th>	ADDRESS (ABSOLUTE)	SCALE	U	F	DESCRIPTION		
42110 1 - <	42109	1	✓	✓	[1] Port – Stop Bits		
421111 \checkmark \checkmark (1) Port - Poll Time421121 \checkmark \checkmark (2) Port42113.42124 \checkmark \checkmark (2) Port42125.42136 \checkmark \checkmark (2) Port42137.42148 \checkmark \checkmark (4) Port42137.42148 \checkmark \checkmark (4) Port42149 \checkmark \checkmark HART - Address (EEA)42149 \checkmark \checkmark HART - Number of Di Oscillator Samples440011 \checkmark \checkmark 440021 \checkmark Capture Oil - Number of Oil Oscillator Samples440021 \checkmark Capture Vater - Number of Oil Oscillator Samples440111 \checkmark \checkmark 440121Capture Water - Number of Oil Oscillator Samples440131Capture Water - Number of Oil Oscillator Samples440141 \checkmark \checkmark 440131Capture Water - Number of Oil Oscillator Samples440141 \checkmark \checkmark 440131Capture Water - Time & Date Stamp440141 \checkmark \checkmark 480011 \checkmark \checkmark 480021 \checkmark \checkmark 480011 \checkmark \checkmark 480021 \checkmark \checkmark 480031 \checkmark \checkmark 480041 \checkmark \checkmark 480051 \checkmark \checkmark 480061 \checkmark \checkmark 480071 \checkmark \checkmark 480081 \checkmark \checkmark 48009	42110	1	✓	✓	[1] Port – Number of Retries		
421121 \checkmark \checkmark (1) Port – Timeout42113.42124 \checkmark \checkmark \checkmark (2) Port42125.42136 \checkmark \checkmark (2) Port42137.42148 \checkmark \checkmark (4) Port42149 \checkmark \checkmark (4) Port42149 \checkmark \checkmark (4) Port42149 \checkmark \checkmark (4) Port421501 \checkmark \checkmark HART – Address (EEA)440011 \checkmark \checkmark 440021Capture Oil – Current Sample44003.440081Capture Water – Number of Oil Oscillator Samples440111 \checkmark Capture Water – Current Sample440121Capture Water – Current Sample440131 \checkmark Capture Water – Current Sample440141 \checkmark Capture Water – Current Sample440151 \checkmark Capture Water – Current Sample440161 \checkmark \checkmark 480011 \checkmark \checkmark 480021 \checkmark \checkmark 480031 \checkmark \checkmark 480041 \checkmark \checkmark 480051 \checkmark \checkmark 480061 \checkmark \checkmark 480061 \checkmark \checkmark 480061 \checkmark \checkmark 480061 \checkmark \checkmark 480071 \checkmark \checkmark 480081 \checkmark \checkmark 480091 \checkmark \checkmark 480091 \checkmark \checkmark 4901<	42111	1	✓	✓	[1] Port – Poll Time		
42113.42124 \checkmark \checkmark \checkmark 2 </td <td>42112</td> <td>1</td> <td>✓</td> <td>✓</td> <td>[1] Port – Timeout</td>	42112	1	✓	✓	[1] Port – Timeout		
42125.42136 \checkmark \checkmark \langle </td <td>4211342124</td> <td></td> <td>✓</td> <td>✓</td> <td>[2] Port</td>	4211342124		✓	✓	[2] Port		
42149 · · · · · HART – Address (EEA) 42150 1 · · HART – Aumber of Preambles 44001 1 · · HART – Number of Dil Oscillator Samples 44002 1 · Capture Oil – Current Sample 44001 1 · · Capture Water – Number of Oil Oscillator Samples 44011 1 · · Capture Water – Current Sample 44011 1 · · Capture Water – Current Sample 44013 1 · Capture Water – Time & Date Stamp 44014 · · (1) Flow Computer – temperature unit code 48001 1 · · (1) Flow Computer – temsity unit code 48003 1 · · (1) Flow Computer – accumulator unit code 48006 1 · · (1) Flow Computer – accumulator unit code 48008 1 · · (1) Flow Computer – accumulator unit code 48001 1 · · <td>4212542136</td> <td></td> <td>✓</td> <td>✓</td> <td>[3] Port</td>	4212542136		✓	✓	[3] Port		
42149 ✓ HÅRT – Address (EEA) 42150 1 ✓ HART – Number of Preambles 44001 1 ✓ Capture Oil – Number of Oil Oscillator Samples 44002 1 Capture Oil – Current Sample 44003.44008 1 Capture Oil – Current Sample 44011 1 ✓ Capture Water – Number of Oil Oscillator Samples 44012 1 Capture Water – Time & Date Stamp 44013.44018 1 Capture Water – Time & Date Stamp 48001 1 ✓ (1) Flow Computer – process unit code 48002 1 ✓ (1) Flow Computer – ressure unit code 48003 1 ✓ (1) Flow Computer – density unit code 48004 1 ✓ (1) Flow Computer – flow unit code 48005 1 ✓ (1) Flow Computer – accumulator unit code 48006 1 ✓ (1) Flow Computer – accumulator unit code 48008 1 ✓ (1) Flow Computer – accumulator unit code 48009 1 ✓ (1) Flow Computer – number of pulses per accumulation unit 48010 1 ✓ (1) F	4213742148		✓	✓	[4] Port		
42150 1 ✓ HART – Number of Preambles 44001 1 ✓ Capture Oil – Number of Oil Oscillator Samples 44002 1 Capture Oil – Current Sample 44003.44008 1 ✓ Capture Water – Number of Oil Oscillator Samples 44011 1 ✓ Capture Water – Current Sample 44012 1 Capture Water – Current Sample 44013.44018 1 ✓ Capture Water – Time & Date Stamp 48001 1 ✓ ✓ [1] Flow Computer – process unit code 48003 1 ✓ ✓ [1] Flow Computer – temperature unit code 48004 1 ✓ ✓ [1] Flow Computer – flow class code 48005 1 ✓ ✓ [1] Flow Computer – flow unit code 48006 1 ✓ ✓ [1] Flow Computer – flow unit code 48007 1 ✓ ✓ [1] Flow Computer – one accumulator unit code 48008 1 ✓ ✓ [1] Flow Computer – one density @STP unit code 48009 1 ✓ ✓ [1] Flow Computer – one density @STP unit code	42149		✓	✓	HART – Address (EEA)		
440011✓Capture Oil – Number of Oil Oscillator Samples440021Capture Oil – Current Sample44003.440081Capture Oil – Time & Date Stamp440111✓Capture Water – Current Sample440121Capture Water – Current Sample44013.440181Capture Water – Current Sample440101✓Capture Water – Time & Date Stamp480011✓✓480021✓✓480031✓✓480041✓✓1Flow Computer – pressure unit code480051✓✓480061✓✓480071✓✓1Flow Computer – flow unit code480081✓✓480091✓✓1Flow Computer – oil density unit code480091✓✓480111✓480121✓480131✓48014✓✓480151✓480101✓480111✓480121✓1Flow Computer – number of pulses per accumulation unit480111✓480121✓480131✓480141✓480151✓480111✓480121✓480131 <td< td=""><td>42150</td><td>1</td><td>✓</td><td>✓</td><td>HART – Number of Preambles</td></td<>	42150	1	✓	✓	HART – Number of Preambles		
440011 \checkmark \checkmark Capture Oil – Number of Oil Oscillator Samples440021Capture Oil – Current Sample440111 \checkmark \checkmark Capture Water – Number of Oil Oscillator Samples440121Capture Water – Current Sample440131Capture Water – Current Sample440141 \checkmark Capture Water – Current Sample440151Capture Water – Time & Date Stamp480011 \checkmark \checkmark 480021 \checkmark \checkmark 480031 \checkmark \checkmark 480041 \checkmark \checkmark 480051 \checkmark \checkmark 480061 \checkmark \checkmark 480071 \checkmark \checkmark 480081 \checkmark \checkmark 480091 \checkmark \checkmark 480091 \checkmark \checkmark 480091 \checkmark \checkmark 480091 \checkmark \checkmark 480111 \checkmark \checkmark 480121 \checkmark \checkmark 480081 \checkmark \checkmark 480091 \checkmark \checkmark 480091 \checkmark \checkmark 480111 \checkmark \checkmark 48011 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>							
440021Capture Oil – Current Sample440031Capture Oil – Time & Date Stamp440111 \checkmark Capture Water – Number of Oil Oscillator Samples440121Capture Water – Current Sample440131Capture Water – Current Sample440111 \checkmark Capture Water – Time & Date Stamp440131 \checkmark Capture Water – Time & Date Stamp480011 \checkmark II Flow Computer – process unit code480021 \checkmark V480031 \checkmark V480041 \checkmark V480051 \checkmark V480061 \checkmark V480071 \checkmark V480081 \checkmark V480091 \checkmark V480091 \checkmark V480101 \checkmark V480111 \checkmark V480121 \checkmark V480131 \checkmark V480141 \checkmark V480151 \checkmark V480111 \checkmark V480121 \checkmark V480131 \checkmark V480141 \checkmark V480131 \checkmark V4801448021 \checkmark 480131 \checkmark 48021.480331 \checkmark 48021.480331 \checkmark 48021.480331 \checkmark 48021.480331 <td< td=""><td>44001</td><td>1</td><td>✓</td><td>✓</td><td>Capture Oil – Number of Oil Oscillator Samples</td></td<>	44001	1	✓	✓	Capture Oil – Number of Oil Oscillator Samples		
44003440081Capture Oil - Time & Date Stamp440111✓Capture Water - Number of Oil Oscillator Samples440121Capture Water - Current Sample44013440181Capture Water - Time & Date Stamp480011✓(1) Flow Computer - process unit code480021✓(1) Flow Computer - temperature unit code480031✓(1) Flow Computer - temperature unit code480041✓(1) Flow Computer - density unit code480051✓(1) Flow Computer - flow unit code480061✓(1) Flow Computer - accumulator unit code480071✓(1) Flow Computer - oil density (0) STP unit code480081✓(1) Flow Computer - oil density (0) STP unit code480101✓(1) Flow Computer - accumulator unit code480111✓(1) Flow Computer - number of pulses per accumulation unit480131✓(1) Flow Computer - API Correction Table48041480531✓(1) Flow Computer - Mater density unit code48021480331✓(1) Flow Computer - Mater density unit code48041480531✓(1) Flow Computer - API Correction Table48041480541✓(1) Flow Computer - Mater density unit code48021482021✓(1) Flow Computer - Mater density unit code48041482041✓(1) Flow Computer - Mater density unit code48041482041✓(2) F	44002	1			Capture Oil – Current Sample		
440111✓✓Capture Water – Number of Oil Öscillator Samples440121Capture Water – Current Sample44013.440181Capture Water – Time & Date Stamp480011✓(1) Flow Computer – temperature unit code480021✓(1) Flow Computer – temperature unit code480031✓(1) Flow Computer – temperature unit code480061✓(1) Flow Computer – flow class code480061✓(1) Flow Computer – flow unit code480061✓(1) Flow Computer – oil density unit code480071✓(1) Flow Computer – oil density unit code480081✓(1) Flow Computer – oil density unit code480091✓(1) Flow Computer – oil density unit code480101✓(1) Flow Computer – water density unit code480111✓(1) Flow Computer – water density unit code480121✓(1) Flow Computer – muber of pulses per accumulation unit480131✓(1) Flow Computer – unit codes48021.480331✓(1) Flow Computer unit codes48021.482021✓(1) Analog Input variable class, unit code48203.482041✓(1) Analog Input variable class, unit code48204.482021✓(1) Analog Input variable class, unit code48201.482021✓(1) Analog Output variable class, unit code4821.482061✓(2) Analog Input variable class, un	4400344008	1			Capture Oil – Time & Date Stamp		
440121Capture Water - Current Sample440121Capture Water - Time & Date Stamp480011 \checkmark \checkmark 480021 \checkmark \checkmark 480031 \checkmark \checkmark 11 Flow Computer - pressure unit code480041 \checkmark 480051 \checkmark 480061 \checkmark 480071 \checkmark 480081 \checkmark 480091 \checkmark 480111 \checkmark \checkmark 11 Flow Computer - acumulator unit code480121 \checkmark 480131 \checkmark 480141 \checkmark \checkmark 11 Flow Computer - water density unit code480111 \checkmark \checkmark 11 Flow Computer - number of pulses per accumulation unit480121 \checkmark 480131 \checkmark 11 Flow Computer - API Correction Table48021.480331 \checkmark 12 Flow Computer unit codes48204.482041 \checkmark 48205.482061 \checkmark 13 Flow Computer unit code48204.482061 \checkmark 14 Analog Input variable class, unit code4821.482101 \checkmark 4821.482101 \checkmark 4821.482101 \checkmark 4821.48210 <td>44011</td> <td>1</td> <td>\checkmark</td> <td>✓</td> <td>Capture Water – Number of Oil Oscillator Samples</td>	44011	1	\checkmark	✓	Capture Water – Number of Oil Oscillator Samples		
44013.440181Capture Water – Time & Date Stamp480011 \checkmark \checkmark 480021 \checkmark \checkmark 480031 \checkmark \checkmark 480041 \checkmark \checkmark 480051 \checkmark \checkmark 480061 \checkmark \checkmark 480071 \checkmark \checkmark 480061 \checkmark \checkmark 480071 \checkmark \checkmark 480081 \checkmark \checkmark 480091 \checkmark \checkmark 480091 \checkmark \checkmark 480111 \checkmark \checkmark 480121 \checkmark \checkmark 480131 \checkmark \checkmark 480141 \checkmark \checkmark 480151 \checkmark \checkmark 480161 \checkmark \checkmark 480171 \checkmark \checkmark 480181 \checkmark \checkmark 480191 \checkmark \checkmark 480121 \checkmark \checkmark 11Flow Computer – actarunator unit code480131 \checkmark \checkmark 480141 \checkmark \checkmark 480111 \checkmark \checkmark 480121 \checkmark \checkmark 480131 \checkmark \checkmark 480141 \checkmark \checkmark 480131 \checkmark \checkmark 48014480531 \checkmark 48014480531 \checkmark 48021.48031 \checkmark 48021.482021 \checkmark 48041.4820	44012	1			Capture Water – Current Sample		
480011 \checkmark \checkmark [1] Flow Computer – process unit code480021 \checkmark \checkmark [1] Flow Computer – temperature unit code480031 \checkmark \checkmark [1] Flow Computer – density unit code480041 \checkmark \checkmark [1] Flow Computer – density unit code480051 \checkmark \checkmark [1] Flow Computer – flow unit code480061 \checkmark \checkmark [1] Flow Computer – accumulator unit code480071 \checkmark \checkmark [1] Flow Computer – accumulator unit code480081 \checkmark \checkmark [1] Flow Computer – oil density @STP unit code480101 \checkmark \checkmark [1] Flow Computer – water density @STP unit code480111 \checkmark \checkmark [1] Flow Computer – numer of pulses per accumulation unit480121 \checkmark \checkmark [1] Flow Computer – numer of pulses per accumulation unit480131 \checkmark \checkmark [1] Flow Computer – numer of pulses per accumulation unit48021.480331 \checkmark \checkmark [1] Flow Computer – numer of pulses per accumulation unit48021.48031 \checkmark \checkmark [1] Flow Computer unit codes48201.482021 \checkmark \checkmark [1] Analog Input variable class, unit code48205.482061 \checkmark \checkmark [2] Analog Input variable class, unit code48207.482081 \checkmark \checkmark [3] Analog Input variable class, unit code48207.482081 \checkmark \checkmark [3] Analog Input variable class, unit code48207.48206	4401344018	1			Capture Water – Time & Date Stamp		
480011✓✓[1] Flow Computer – process unit code480021✓✓[1] Flow Computer – temperature unit code480031✓✓[1] Flow Computer – density unit code480041✓✓[1] Flow Computer – flow class code480051✓✓[1] Flow Computer – flow class code480061✓✓[1] Flow Computer – flow unit code480071✓✓[1] Flow Computer – accumulator unit code480081✓✓[1] Flow Computer – oil density unit code480091✓✓[1] Flow Computer – oil density Unit code480101✓✓[1] Flow Computer – water density Unit code480121✓✓[1] Flow Computer – water density @STP unit code480131✓✓[1] Flow Computer – number of pulses per accumulation unit48021.480331✓✓[1] Flow Computer – Nater density @STP unit code48021.480331✓✓[1] Flow Computer – API Correction Table48021.480331✓✓[2] Flow Computer unit codes48201.482021✓✓[3] Flow Computer unit codes48201.482021✓✓[3] Analog Input variable class, unit code48203.482041✓✓[3] Analog Input variable class, unit code48208.482061✓✓[3] Analog Input variable class, unit code48209.482101✓✓ <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>							
480021 \checkmark \checkmark \uparrow	48001	1	✓	✓	[1] Flow Computer – process unit code		
480031 \checkmark \checkmark 11 Flow Computer – pressure unit code480041 \checkmark \checkmark 11 Flow Computer – density unit code480051 \checkmark \checkmark 11 Flow Computer – flow unit code480061 \checkmark \checkmark 11 Flow Computer – flow unit code480071 \checkmark \checkmark 11 Flow Computer – oil density unit code480081 \checkmark \checkmark 11 Flow Computer – oil density unit code480091 \checkmark \checkmark 11 Flow Computer – oil density unit code480101 \checkmark \checkmark 11 Flow Computer – water density Unit code480111 \checkmark \checkmark 11 Flow Computer – water density USEP unit code480121 \checkmark \checkmark 11 Flow Computer – number of pulses per accumulation unit480131 \checkmark \checkmark 11 Flow Computer – number of pulses per accumulation unit48014480131 \checkmark \checkmark 48011.480031 \checkmark \checkmark 12 Flow Computer – number of pulses per accumulation unit480144801 \checkmark \checkmark 13 Flow Computer – number of pulses per accumulation unit4801448041 \checkmark \checkmark 13 Flow Computer – number of pulses per accumulation unit4802148041 \checkmark \checkmark 13 Flow Computer – aceu48041 \checkmark \checkmark 13 Flow Computer – aceu48041 \checkmark \checkmark 13 Flow Computer – aceu48041 \checkmark \checkmark 14 nalog Input variable class, unit code482041 \checkmark \checkmark </td <td>48002</td> <td>1</td> <td>✓</td> <td>✓</td> <td>[1] Flow Computer – temperature unit code</td>	48002	1	✓	✓	[1] Flow Computer – temperature unit code		
480041 \checkmark \checkmark (1) Flow Computer – density unit code480051 \checkmark \checkmark (1) Flow Computer – density unit code480061 \checkmark \checkmark (1) Flow Computer – flow unit code480071 \checkmark \checkmark (1) Flow Computer – occumulator unit code480081 \checkmark \checkmark (1) Flow Computer – oil density $QSTP$ unit code480091 \checkmark \checkmark (1) Flow Computer – oil density $QSTP$ unit code480101 \checkmark \checkmark (1) Flow Computer – water density $QSTP$ unit code480111 \checkmark \checkmark (1) Flow Computer – water density $QSTP$ unit code480121 \checkmark \checkmark (1) Flow Computer – number of pulses per accumulation unit480131 \checkmark \checkmark (1) Flow Computer – API Correction Table48041480331 \checkmark \checkmark (2) Flow Computer – number of pulses per accumulation unit48041480531 \checkmark \checkmark (2) Flow Computer – number of pulses per accumulation unit48041480531 \checkmark \checkmark (3) Flow Computer – number of pulses per accumulation unit48021482021 \checkmark \checkmark (3) Flow Computer – number of pulses per accumulation unit48203482041 \checkmark \checkmark (3) Flow Computer – aPI Correction Table48203482041 \checkmark \checkmark (3) Flow Computer – aPI Correction Table48203482041 \checkmark \checkmark (3) Analog Input variable class, unit code48203482041	48003	1	✓	✓	[1] Flow Computer – pressure unit code		
480051 \checkmark \checkmark (1) Flow Computer – flow class code480061 \checkmark \checkmark (1) Flow Computer – flow unit code480071 \checkmark \checkmark (1) Flow Computer – oil density unit code480081 \checkmark \checkmark (1) Flow Computer – oil density $@STP$ unit code480091 \checkmark \checkmark (1) Flow Computer – oil density $@STP$ unit code480101 \checkmark \checkmark (1) Flow Computer – water density $@STP$ unit code480111 \checkmark \checkmark (1) Flow Computer – water density $@STP$ unit code480121 \checkmark \checkmark (1) Flow Computer – water density $@STP$ unit code480131 \checkmark \checkmark (1) Flow Computer – accumulation unit480131 \checkmark \checkmark (1) Flow Computer – API Correction Table48021480331 \checkmark \checkmark (2) Flow Computer unit codes48021480531 \checkmark \checkmark (3) Flow Computer unit codes48201482021 \checkmark \checkmark (3) Analog Input variable class, unit code48203482041 \checkmark \checkmark (3) Analog Input variable class, unit code48204482061 \checkmark \checkmark (3) Analog Input variable class, unit code48204482061 \checkmark \checkmark (3) Analog Input variable class, unit code48209482101 \checkmark \checkmark (3) Analog Output variable class, unit code48213482141 \checkmark \checkmark (2) Analog Output variable class, unit code48214.	48004	1	✓	✓	[1] Flow Computer – density unit code		
480061 \checkmark (1) Flow Computer – flow unit code480071 \checkmark \checkmark (1) Flow Computer – flow unit code480081 \checkmark \checkmark (1) Flow Computer – oil density wit code480091 \checkmark \checkmark (1) Flow Computer – oil density @STP unit code480101 \checkmark \checkmark (1) Flow Computer – water density wit code480111 \checkmark \checkmark (1) Flow Computer – water density @STP unit code480121 \checkmark \checkmark (1) Flow Computer – number of pulses per accumulation unit480131 \checkmark \checkmark (1) Flow Computer – number of pulses per accumulation unit48021480331 \checkmark \checkmark (2) Flow Computer – number of pulses per accumulation unit48041480531 \checkmark \checkmark (3) Flow Computer unit codes48201482021 \checkmark \checkmark (1) Analog Input variable class, unit code48203482041 \checkmark \checkmark (2) Analog Input variable class, unit code48205482061 \checkmark \checkmark (3) Analog Input variable class, unit code48207482081 \checkmark \checkmark (2) Analog Input variable class, unit code48211482121 \checkmark \checkmark (1) Analog Output variable class, unit code48211482121 \checkmark \checkmark (2) Analog Output variable class, unit code48211482141 \checkmark \checkmark (2) Analog Output variable class, unit code48215482161 \checkmark \checkmark (3) Analog Output variable class, unit code<	48005	1	✓	✓	[1] Flow Computer – flow class code		
1 \checkmark (1) Flow Computer - accumulator unit code480071 \checkmark \checkmark (1) Flow Computer - accumulator unit code480081 \checkmark \checkmark (1) Flow Computer - oil density unit code480101 \checkmark \checkmark (1) Flow Computer - water density $@STP$ unit code480111 \checkmark \checkmark (1) Flow Computer - water density $@STP$ unit code480121 \checkmark \checkmark (1) Flow Computer - number of pulses per accumulation unit480131 \checkmark \checkmark (1) Flow Computer - API Correction Table48021480331 \checkmark \checkmark (1) Flow Computer unit codes4801480531 \checkmark \checkmark (2) Flow Computer unit codes4801480531 \checkmark \checkmark (2) Flow Computer unit codes48201482021 \checkmark \checkmark (2) Flow Computer unit codes48203482041 \checkmark \checkmark (2) Analog Input variable class, unit code48203482041 \checkmark \checkmark (2) Analog Input variable class, unit code48203482061 \checkmark \checkmark (3) Analog Input variable class, unit code48203482041 \checkmark \checkmark (2) Analog Input variable class, unit code48203482101 \checkmark \checkmark (3) Analog Output variable class, unit code48213482141 \checkmark \checkmark (2) Analog Output variable class, unit code482134	48006	1	✓	✓	[1] Flow Computer – flow unit code		
480081 \checkmark \checkmark 11 Flow Computer – oil density unit code480081 \checkmark \checkmark 11 Flow Computer – oil density $@STP$ unit code480101 \checkmark \checkmark 11 Flow Computer – water density $@STP$ unit code480111 \checkmark \checkmark 11 Flow Computer – water density $@STP$ unit code480121 \checkmark \checkmark 11 Flow Computer – number of pulses per accumulation unit480131 \checkmark \checkmark 11 Flow Computer – number of pulses per accumulation unit48014480331 \checkmark \checkmark 48021.480331 \checkmark \checkmark 12 Flow Computer – number of pulses per accumulation unit48021.480331 \checkmark \checkmark 13 Flow Computer – number of pulses per accumulation unit48021.48031 \checkmark \checkmark 13 Flow Computer – number of pulses per accumulation unit48021.48031 \checkmark \checkmark 13 Flow Computer – number of pulses per accumulation unit48021.48031 \checkmark \checkmark 13 Flow Computer – number of pulses per accumulation unit48021.48021 \checkmark \checkmark 13 Flow Computer – number of pulses per accumulation unit48203.482041 \checkmark \checkmark 13 Flow Computer – number of pulses per accumulation unit48205.482061 \checkmark \checkmark 14 Analog Input variable class, unit code48205.482061 \checkmark \checkmark 14 Analog Input variable class, unit code48213.482141 \checkmark \checkmark 11 Analog Output variable class, unit code48215.482161 <td>48007</td> <td>1</td> <td>✓</td> <td>✓</td> <td>[1] Flow Computer – accumulator unit code</td>	48007	1	✓	✓	[1] Flow Computer – accumulator unit code		
100001 \checkmark \checkmark 11 Flow Computer - oil density @STP unit code480091 \checkmark \checkmark 11 Flow Computer - water density unit code480101 \checkmark \checkmark 11 Flow Computer - water density @STP unit code480111 \checkmark \checkmark 11 Flow Computer - water density @STP unit code480121 \checkmark \checkmark 11 Flow Computer - number of pulses per accumulation unit480131 \checkmark \checkmark 11 Flow Computer - API Correction Table48021480331 \checkmark \checkmark 12 Flow Computer unit codes48041480531 \checkmark \checkmark 13 Flow Computer unit codes48201482021 \checkmark \checkmark 14 halog Input variable class, unit code48203482041 \checkmark \checkmark 13 halog Input variable class, unit code48204482081 \checkmark \checkmark 14 halog Input variable class, unit code48209482061 \checkmark \checkmark 13 halog Input variable class, unit code48209482101 \checkmark \checkmark 14 halog Output variable class, unit code48211482121 \checkmark \checkmark 13 halog Output variable class, unit code48211482141 \checkmark \checkmark 13 halog Output variable class, unit code48211482141 \checkmark \checkmark 13 halog Output variable class, unit code48211482141 \checkmark \checkmark 14 halog Output variable class, unit code48211482201 \checkmark \checkmark 14 halog Output variable class, unit code4821148214 <td< td=""><td>48008</td><td>1</td><td>✓</td><td>✓</td><td>[1] Flow Computer – oil density unit code</td></td<>	48008	1	✓	✓	[1] Flow Computer – oil density unit code		
11 \checkmark \checkmark 11 Flow Computer – water density unit code480101 \checkmark \checkmark 11 Flow Computer – water density $@STP$ unit code480111 \checkmark \checkmark 11 Flow Computer – number of pulses per accumulation unit480121 \checkmark \checkmark 11 Flow Computer – API Correction Table480131 \checkmark \checkmark 11 Flow Computer – API correction Table48021480331 \checkmark \checkmark 12 Flow Computer unit codes48041480531 \checkmark \checkmark 13 Flow Computer unit codes48201482021 \checkmark \checkmark 12 Analog Input variable class, unit code48203482041 \checkmark \checkmark 13 Analog Input variable class, unit code48203482061 \checkmark \checkmark 13 Analog Input variable class, unit code48209482061 \checkmark \checkmark 13 Analog Input variable class, unit code48209482101 \checkmark \checkmark 13 Analog Output variable class, unit code48211482121 \checkmark \checkmark 13 Analog Output variable class, unit code48213482141 \checkmark \checkmark 13 Analog Output variable class, unit code48213482161 \checkmark \checkmark 13 Analog Output variable class, unit code48214482201 \checkmark \checkmark 13 Analog Output variable class, unit code48213482161 \checkmark \checkmark 13 Analog Output variable class, unit code48214482201 \checkmark \checkmark 14 Analog Output variable class, unit code4821448220 <td>48009</td> <td>1</td> <td>✓</td> <td>✓</td> <td>[1] Flow Computer – oil density @STP unit code</td>	48009	1	✓	✓	[1] Flow Computer – oil density @STP unit code		
480111 \checkmark \checkmark [1] Flow Computer – water density @STP unit code480121 \checkmark \checkmark [1] Flow Computer – number of pulses per accumulation unit480131 \checkmark \checkmark [1] Flow Computer – API Correction Table48021.480331 \checkmark \checkmark [2] Flow Computer unit codes48041.480531 \checkmark \checkmark [2] Flow Computer unit codes48041.480531 \checkmark \checkmark [3] Flow Computer unit codes48201.482021 \checkmark \checkmark [2] Analog Input variable class, unit code48203.482041 \checkmark \checkmark [3] Analog Input variable class, unit code48204.482061 \checkmark \checkmark [3] Analog Input variable class, unit code48207.482081 \checkmark \checkmark [3] Analog Input variable class, unit code48210.482101 \checkmark \checkmark [5] Analog Input variable class, unit code4821.482121 \checkmark \checkmark [3] Analog Output variable class, unit code4821.482141 \checkmark \checkmark [3] Analog Output variable class, unit code4821.482161 \checkmark \checkmark [3] Analog Output variable class, unit code4821.482201 \checkmark \checkmark [4] Analog Output variable class, unit code4821.482211 \checkmark \checkmark [5] Analog Output variable class, unit code4821.482211 \checkmark \checkmark [6] Analog Output variable class, unit code4821.482211 \checkmark \checkmark [6] Analog Output variable class, unit code4821.48222 <t< td=""><td>48010</td><td>1</td><td>✓</td><td>✓</td><td>[1] Flow Computer – water density unit code</td></t<>	48010	1	✓	✓	[1] Flow Computer – water density unit code		
1111111480121 \checkmark \checkmark [1] Flow Computer – number of pulses per accumulation unit480131 \checkmark \checkmark [1] Flow Computer – API Correction Table48021.480331 \checkmark \checkmark [2] Flow Computer unit codes48041.480531 \checkmark \checkmark [3] Flow Computer unit codes48201.482021 \checkmark \checkmark [3] Flow Computer unit codes48201.482021 \checkmark \checkmark [2] Analog Input variable class, unit code48203.482041 \checkmark \checkmark [2] Analog Input variable class, unit code48205.482061 \checkmark \checkmark [3] Analog Input variable class, unit code48209.482081 \checkmark \checkmark [3] Analog Input variable class, unit code48209.482101 \checkmark \checkmark [5] Analog Output variable class, unit code48213.482141 \checkmark \checkmark [2] Analog Output variable class, unit code48215.482161 \checkmark \checkmark [3] Analog Output variable class, unit code48219.482201 \checkmark \checkmark [3] Analog Output variable class, unit code48214.482201 \checkmark \checkmark [3] Analog Output variable class, unit code48215.482161 \checkmark \checkmark [3] Analog Output variable class, unit code48219.482201 \checkmark \checkmark [5] Analog Output variable class, unit code48223.482241 \checkmark \checkmark [6] Analog Output variable class, unit code48223.482261 \checkmark \checkmark	48011	1	✓	✓	[1] Flow Computer – water density @STP unit code		
101121 \checkmark 111 Fow Computer – API Correction Table480131 \checkmark \checkmark [2] Flow Computer – API Correction Table48041480331 \checkmark \checkmark [2] Flow Computer unit codes48041480531 \checkmark \checkmark [3] Flow Computer unit codes48041480531 \checkmark \checkmark [3] Flow Computer unit codes48201482021 \checkmark \checkmark [3] Analog Input variable class, unit code48203482041 \checkmark \checkmark [2] Analog Input variable class, unit code48205482061 \checkmark \checkmark [3] Analog Input variable class, unit code48207482081 \checkmark \checkmark [5] Analog Input variable class, unit code48210482101 \checkmark \checkmark [5] Analog Output variable class, unit code48211482121 \checkmark \checkmark [1] Analog Output variable class, unit code48213482141 \checkmark \checkmark [2] Analog Output variable class, unit code48217482181 \checkmark \checkmark [3] Analog Output variable class, unit code48219482201 \checkmark \checkmark [5] Analog Output variable class, unit code48221482221 \checkmark \checkmark [6] Analog Output variable class, unit code48223482241 \checkmark \checkmark [6] Analog Output variable class, unit code48223482241 \checkmark \checkmark [6] Analog Output variable class, unit code48223482261 \checkmark \checkmark [8] Analog Output variable class, unit code48225482261<	48012	1	✓	✓	[1] Flow Computer – number of pulses per accumulation unit		
101011<	48013	1	✓	✓	[1] Flow Computer – API Correction Table		
AsotaImage: construction of the construc	48021 48033	1	✓	✓	[2] Flow Computer unit codes		
AssociationAssociation48201482021 \checkmark \checkmark 48203482041 \checkmark \checkmark 1Analog Input variable class, unit code48203482061 \checkmark 48205482061 \checkmark \checkmark [3] Analog Input variable class, unit code48207482081 \checkmark \checkmark [4] Analog Input variable class, unit code48209482101 \checkmark \checkmark [5] Analog Input variable class, unit code48211482121 \checkmark \checkmark [2] Analog Output variable class, unit code48213482141 \checkmark \checkmark [3] Analog Output variable class, unit code48217482181 \checkmark \checkmark [4] Analog Output variable class, unit code48211482201 \checkmark \checkmark [5] Analog Output variable class, unit code48211482211 \checkmark \checkmark [6] Analog Output variable class, unit code48211482131 \checkmark \checkmark [5] Analog Output variable class, unit code48211482201 \checkmark \checkmark [6] Analog Output variable class, unit code48221482221 \checkmark \checkmark [6] Analog Output variable class, unit code48223482241 \checkmark \checkmark [7] Analog Output variable class, unit code48223482261 \checkmark \checkmark [8] Analog Output variable class, unit code48223482301 \checkmark \checkmark [9] Analog Output variable class, unit code	48041 48053	1	✓	✓	[3] Flow Computer unit codes		
48201482021 \checkmark \checkmark [1] Analog Input variable class, unit code48203482041 \checkmark \checkmark [2] Analog Input variable class, unit code48205482061 \checkmark \checkmark [3] Analog Input variable class, unit code48207482081 \checkmark \checkmark [4] Analog Input variable class, unit code48209482101 \checkmark \checkmark [5] Analog Input variable class, unit code48211482121 \checkmark \checkmark [1] Analog Output variable class, unit code48213482141 \checkmark \checkmark [2] Analog Output variable class, unit code48217482161 \checkmark \checkmark [3] Analog Output variable class, unit code48219482201 \checkmark \checkmark [4] Analog Output variable class, unit code48221482221 \checkmark \checkmark [6] Analog Output variable class, unit code48223482241 \checkmark \checkmark [6] Analog Output variable class, unit code48223482261 \checkmark \checkmark [8] Analog Output variable class, unit code48223482261 \checkmark \checkmark [9] Analog Output variable class, unit code48223482301 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [9] Relay variable class, unit code48229482301 \checkmark \checkmark [2] Relay varia		•					
11 \checkmark \checkmark [2] Analog Input variable class, unit code48203.482041 \checkmark \checkmark [2] Analog Input variable class, unit code48205.482061 \checkmark \checkmark [3] Analog Input variable class, unit code48209.482101 \checkmark \checkmark [4] Analog Input variable class, unit code48211.482121 \checkmark \checkmark [5] Analog Output variable class, unit code48213.482141 \checkmark \checkmark [2] Analog Output variable class, unit code48215.482161 \checkmark \checkmark [3] Analog Output variable class, unit code48217.482181 \checkmark \checkmark [3] Analog Output variable class, unit code48219.482201 \checkmark \checkmark [4] Analog Output variable class, unit code48221.482221 \checkmark \checkmark [5] Analog Output variable class, unit code48223.482241 \checkmark \checkmark [6] Analog Output variable class, unit code48225.482261 \checkmark \checkmark [8] Analog Output variable class, unit code48229.482301 \checkmark \checkmark [9] Analog Output variable class, unit code48229.482301 \checkmark \checkmark [1] Relay variable class, unit code48229.482301 \checkmark \checkmark [2] Relay variable class, unit code	48201 48202	1	✓	✓	[1] Analog Input variable class unit code		
48205.482061 \checkmark \checkmark [3] Analog Input variable class, unit code48205.482081 \checkmark \checkmark [4] Analog Input variable class, unit code48209.482101 \checkmark \checkmark [5] Analog Input variable class, unit code48211.482121 \checkmark \checkmark [1] Analog Output variable class, unit code48213.482141 \checkmark \checkmark [2] Analog Output variable class, unit code48215.482161 \checkmark \checkmark [3] Analog Output variable class, unit code48217.482181 \checkmark \checkmark [4] Analog Output variable class, unit code48219.482201 \checkmark \checkmark [5] Analog Output variable class, unit code48223.482241 \checkmark \checkmark [6] Analog Output variable class, unit code48225.482261 \checkmark \checkmark [6] Analog Output variable class, unit code48227.482281 \checkmark \checkmark [9] Analog Output variable class, unit code48229.482301 \checkmark \checkmark [9] Analog Output variable class, unit code48229.482301 \checkmark \checkmark [9] Analog Output variable class, unit code48229.482301 \checkmark \checkmark [1] Relay variable class, unit code48229.482301 \checkmark \checkmark [2] Relay variable class, unit code	48203 48204	1	✓	✓	[2] Analog Input variable class unit code		
111 <th< td=""><td>48205 48206</td><td>1</td><td>✓</td><td>✓</td><td>[3] Analog Input variable class unit code</td></th<>	48205 48206	1	✓	✓	[3] Analog Input variable class unit code		
111 <th< td=""><td>48207 48208</td><td>1</td><td>✓</td><td>✓</td><td>[4] Analog Input variable class unit code</td></th<>	48207 48208	1	✓	✓	[4] Analog Input variable class unit code		
102001.1482101 \checkmark \checkmark [1] Analog Output variable class, unit code48211482121 \checkmark \checkmark [2] Analog Output variable class, unit code48213482141 \checkmark \checkmark [2] Analog Output variable class, unit code48215482161 \checkmark \checkmark [3] Analog Output variable class, unit code48217482181 \checkmark \checkmark [4] Analog Output variable class, unit code48219482201 \checkmark \checkmark [5] Analog Output variable class, unit code48223482241 \checkmark \checkmark [6] Analog Output variable class, unit code48225482261 \checkmark \checkmark [7] Analog Output variable class, unit code48227482281 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [9] Analog Output variable class, unit code48231482321 \checkmark \checkmark [1] Relay variable class, unit code48231482321 \checkmark \checkmark [1] Relay variable class, unit code	48209 48210	1	✓	✓	[5] Analog Input variable class unit code		
10211102121 \checkmark \checkmark [1] Analog Output variable class, unit code48213482141 \checkmark \checkmark [2] Analog Output variable class, unit code48215482161 \checkmark \checkmark [3] Analog Output variable class, unit code48217482181 \checkmark \checkmark [4] Analog Output variable class, unit code48219482201 \checkmark \checkmark [5] Analog Output variable class, unit code48221482221 \checkmark \checkmark [6] Analog Output variable class, unit code48223482241 \checkmark \checkmark [7] Analog Output variable class, unit code48225482261 \checkmark \checkmark [8] Analog Output variable class, unit code48227482281 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [1] Relay variable class, unit code48231482321 \checkmark \checkmark [1] Relay variable class, unit code	48211 48212	1	\checkmark	\checkmark	[1] Analog Output variable class unit code		
10210102111 \checkmark \checkmark [2] Analog Output variable olded, unit code48215482161 \checkmark \checkmark [3] Analog Output variable class, unit code48217482181 \checkmark \checkmark [4] Analog Output variable class, unit code48219482201 \checkmark \checkmark [5] Analog Output variable class, unit code48221482221 \checkmark \checkmark [6] Analog Output variable class, unit code48223482241 \checkmark \checkmark [7] Analog Output variable class, unit code48225482261 \checkmark \checkmark [8] Analog Output variable class, unit code48227482281 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [1] Relay variable class, unit code48231482321 \checkmark \checkmark [2] Relay variable class, unit code	48213 48214	1	✓	✓	[2] Analog Output variable class, unit code		
10210102101 \checkmark \checkmark [6] Analog Output variable class, unit code48217482181 \checkmark \checkmark [4] Analog Output variable class, unit code48219482201 \checkmark \checkmark [5] Analog Output variable class, unit code48221482221 \checkmark \checkmark [6] Analog Output variable class, unit code48223482241 \checkmark \checkmark [7] Analog Output variable class, unit code48225482261 \checkmark \checkmark [8] Analog Output variable class, unit code48227482281 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [1] Relay variable class, unit code48231482321 \checkmark \checkmark [2] Relay variable class, unit code	48215 48216	1	\checkmark	\checkmark	[3] Analog Output variable class, unit code		
10211102101 \checkmark \checkmark [1] Analog Output variable class, unit code48219482201 \checkmark \checkmark [5] Analog Output variable class, unit code48221482221 \checkmark \checkmark [6] Analog Output variable class, unit code48223482241 \checkmark \checkmark [7] Analog Output variable class, unit code48225482261 \checkmark \checkmark [8] Analog Output variable class, unit code48227482281 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [1] Relay variable class, unit code48231482321 \checkmark \checkmark [2] Relay variable class, unit code	48217 48218	1	\checkmark	\checkmark	[4] Analog Output variable class, unit code		
48221482221 \checkmark [6] Analog Output variable class, unit code48223482241 \checkmark \checkmark [7] Analog Output variable class, unit code48225482261 \checkmark \checkmark [8] Analog Output variable class, unit code48227482281 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [1] Relay variable class, unit code48231482321 \checkmark \checkmark [2] Relay variable class, unit code	48219 48220	1	· ✓	· •	[5] Analog Output variable class, unit code		
48221482241 \checkmark \checkmark [6] Analog Output variable class, unit code48223482241 \checkmark \checkmark [7] Analog Output variable class, unit code48225482261 \checkmark \checkmark [8] Analog Output variable class, unit code48227482281 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [1] Relay variable class, unit code48231482321 \checkmark \checkmark [2] Relay variable class, unit code	48221 48222	1	· •	· •	[6] Analog Output variable class, unit code		
48225482261 \checkmark \checkmark [8] Analog Output variable class, unit code48227482281 \checkmark \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark [1] Relay variable class, unit code48231482321 \checkmark \checkmark [2] Relay variable class, unit code	48223 48224	1	· ✓	· •	[7] Analog Output variable class, unit code		
48227482281 \checkmark [9] Analog Output variable class, unit code48229482301 \checkmark \checkmark 48231482321 \checkmark \checkmark [2] Relay variable class, unit code	48225 48226	1	, ,	, ,	[8] Analog Output variable class, unit code		
48229482301 \checkmark \checkmark [1] Relay variable class, unit code48231482321 \checkmark \checkmark [2] Relay variable class, unit code	48227 48228	1	, ,	, ,	[9] Analog Output variable class, unit code		
4822948230 1 ✓ ✓ [1] Relay variable class, unit code 4823148232 1 ✓ ✓ [2] Relay variable class, unit code			<u> </u>	, 			
$4823148232 \qquad 1 \qquad \checkmark \qquad \checkmark \qquad [2] \text{ Relay variable class, unit code}$	48229 48230	1	√	~	[1] Relay variable class unit code		
	48231 48232	1	, ,	•	[2] Relay variable class, unit code		
	+0201+0202		† ·	<u>,</u> _			

ADDRESS (ABSOLUTE)	SCALE	U	F	DESCRIPTION
4500145002	1	✓	✓	HART – Date
4500345019	1	✓	✓	HART – Long Tag
4502045024	1	✓	✓	HART – Short Tag
4502545033	1	✓	✓	HART – Description
4503445050	1	✓	✓	HART – Message
4505345054	1		✓	Calibration Version
4505545057	1		✓	Calibration Technician
4505842078	1		✓	Copyright
4507945089	1		✓	Analyzer Information
4509045095	1		✓	Assembly Date
49000	1	✓	✓	Scratchpad Mirror of 49001
4900149050	1	✓	✓	Scratchpad
4910149120	1	✓	✓	User-Select Register Configuration
49980	1	\checkmark	\checkmark	Password Change
49990	1	*	*	Unlock (enter password here)

ADDRESS (ABSOLUTE)	SCALE (LONG INT)	U	F	DESCRIPTION		
00001	1			Serial Number – Measurement Section		
00003	1	✓	✓	Diagnostics		
00005	1	✓	✓	Extended Diagnostics		
00007	1	\checkmark	✓	Diagnostics Error Code		
00009	1	✓	✓	Diagnostics Message Code		
00011	1000			Process Value (Water Content)		
00013	10			Process Temperature		
00015	10			User Temperature		
00017	1			Emulsion Phase		
00019	1	✓	✓	Stream Select		
00021	100	✓	✓	Salinity		
00023	100	✓	✓	Oil Adjust		
00025	100	✓	✓	Water Adjust		
00027	1	✓	✓	Unit Code – Temperature		
00029	1000			Unadjusted, Unclipped Water Content Value		
00031	1000	✓	✓	Oil Index		
00033	1000	✓	✓	Water Index		
00035	10000	✓	✓	Oil P0		
00037	10000	✓	✓	Oil P1		
00039	100	✓	✓	Calibrate Oil Phase		
00041	100	✓	✓	Calibrate Water Phase		
00101	1000			Frequency – Oil Oscillator		
00103	1000			Incident Power – Oil Oscillator		
00105	1000			Reflected Power – Oil Oscillator		
00107	1000			IP/RP – Oil Oscillator		
00109	1000			IP/RP (dB) – Oil Oscillator		
	1000					
00111	1000			Frequency – Water Oscillator		
00113	1000			Incident Power – Water Oscillator		
00115	1000			Reflected Power – Water Oscillator		
00117	1000			IP/RP – Water Oscillator		
00119	1000			IP/RP (dB) – Water Oscillator		
00110	1000					
00201	1000	✓	✓	Oil Calculation Cutoff Value		
00203	1000	✓	✓	Oil Calculation Curve 1 Maximum Value		
00205	1000	✓	✓	Oil Calculation Curve 2 Maximum Value		
00200	1000					
00701	1000	✓	✓	Dampening Value – Water Content		
00703	1000		✓	Minimum – Water Content		
00705	1000		✓	Maximum – Water Content		
00707	1000	✓	✓	Alarm Low – Water Content		
00709	1000	✓	✓	Alarm High – Water Content		
	1000					
00711	1000	✓	✓	Dampening Value – Process Temperature		
00713	10		✓	Minimum – Process Temperature		
00715	10		✓	Maximum – Process Temperature		
00717	10	✓	✓	Alarm Low – Process Temperature		
00719	10	✓	✓	Alarm High – Process Temperature		
00721	10	✓	✓	User Temperature Adjust		
		1	1			

Table A.5 - MODBUS[®] FLOATING-POINT / LONG INTEGER TABLE

ADDRESS (ABSOLUTE)		U	F	DESCRIPTION		
((_0.10)					
00723	100		✓	Minimum – Salinity		
00725	100		✓	Maximum – Salinity		
00727	1000	\checkmark	\checkmark	Minimum – Oil Frequency		
00729	1000	✓	✓	Maximum – Oil Frequency		
00731	1000	\checkmark	✓	Low Oil Frequency		
00733	1000	\checkmark	✓	High Oil Frequency		
00735	1000	✓	✓	Minimum – Water Frequency		
00737	1000	\checkmark	\checkmark	Maximum – Water Frequency		
00739	1000	✓	✓	Low Water Frequency		
00741	1000	\checkmark	✓	High Water Frequency		
00801	10000			Oscillator Select Voltage		
00803	10000			VTUNE Output Voltage		
00805	10000			TUNE Select Voltage		
00807	10000			Reflected Power		
00809	10000			Incident Power		
00811	10000			Process Temperature		
00813	10000			Electronics Temperature		
00815	10000			Ground Sense Voltage		
00817	10000			VTUNE Input Voltage		
00819	10000	\checkmark	\checkmark	[1] DAC output voltage for Analog Output		
00821	10000	\checkmark	\checkmark	[2] DAC output voltage for Analog Output		
00823	10000	\checkmark	\checkmark	[3] DAC output voltage for Analog Output		
00825	10000	\checkmark	\checkmark	[4] DAC output voltage for Analog Output		
00827	10000	✓	✓	[5] DAC output voltage for Analog Output		
00829	10000	✓	✓	[6] DAC output voltage for Analog Output		
00831	10000	✓	✓	[7] DAC output voltage for Analog Output		
00833	10000	✓	 ✓ 	[8] DAC output voltage for Analog Output		
00835	10000	✓	✓	[9] DAC output voltage for Analog Output		
00841	10000	✓	 ✓ 	[1] ADC input voltage for Analog Input		
00843	10000	 ✓ 	✓	[2] ADC input voltage for Analog Input		
00845	10000	 ✓ 	 ✓ 	[3] ADC input voltage for Analog Input		
00847	10000	 ✓ 	 ✓ 	[4] ADC input voltage for Analog Input		
00849	10000	✓	~	[5] ADC input voltage for Analog Input		
00074						
00871	1	√	√	[1] Relay – Mode		
00873	1	√	✓ ✓	[1] Relay – Status Mask		
00875	1	 ✓ 	 ✓ 	[1] Relay – Variable Select		
00877	1	✓	✓	[1] Relay – Setpoint Value		
00001	1			121 Delay Mada		
		V	V	[2] Relay - Mode		
00003	1	v	v	[2] Reidy - Status Mask [2] Doloy - Variable Solact		
00000	1	V V	v	[2] Relay – Variable Select		
υυδδ/		v	~	[2] Relay – Setpoint Value		
00000	1000	./	./	Density Correction Factor for Temperature		
00889	1000	~	~	Density – Correction Factor for Temperature		

ADDRESS (ABSOLUTE)		U	F	DESCRIPTION
00891	10000	✓	✓	Density – Correction Factor for Density
00893	10000	✓	✓	Density – Correction Factor Offset
00895	100	✓	✓	Density – Water Content Correction Factor
00897	100	✓	✓	Density – Water Content Correction Offset
00899	100	✓	✓	Density – Factory Calibration Density in API60F
01001	100	✓	✓	[1] Analog Input – Current
01003	100			[1] Analog Input – Current Percent of Range
01005	1	✓	✓	[1] Analog Input – Value
01007	1	✓	✓	[1] Analog Input – Variable Select
01009	1000	✓	✓	[1] Analog Input – Current Dampening Value
01011	1	✓	✓	[1] Analog Input – Minimum Trim Value
01013	1	✓	✓	[1] Analog Input – Maximum Trim Value
01015	1000	✓	✓	[1] Analog Input – Minimum Trim Value Current
01017	1000	✓	✓	[1] Analog Input – Maximum Trim Value Current
01019	10000	✓	✓	[1] Analog Input – Lower Range Value
01021	10000	✓	✓	[1] Analog Input – Upper Range Value
0103101052				[2] Analog Input
0106101082				[3] Analog Input
0109101112				[4] Analog Input
0112101142				[5] Analog Input
01201	100	✓	✓	[1] Analog Output – Current
01203	100			[1] Analog Output – Current Percent of Range
01205	1	✓	✓	[1] Analog Output – Variable Select
01207	1000	✓	✓	[1] Analog Output – Current Dampening Value
01209	1000	✓	✓	[1] Analog Output – Proportional Constant
01211	1000	✓	✓	[1] Analog Output – Integral Constant
01213	1000	✓	✓	[1] Analog Output – Derivative Constant
01215	1000	✓	✓	[1] Analog Output – Manual Percent Input
01217	1000	✓	✓	[1] Analog Output – PID Setpoint
01219	1	✓	✓	[1] Analog Output – Minimum Trim Value
01221	1	✓	✓	[1] Analog Output – Maximum Trim Value
01223	1000	✓	✓	[1] Analog Output – Minimum Trim Value Current
01225	1000	✓	✓	[1] Analog Output – Maximum Trim Value Current
01227	10000	✓	✓	[1] Analog Output – Lower Range Value
01229	10000	✓	✓	[1] Analog Output – Upper Range Value
0123101260				[2] Analog Output
0126101290				[3] Analog Output
0129101320				[4] Analog Output
0132101350				[5] Analog Output
0135101380				[6] Analog Output
0138101410				[7] Analog Output
0141101440				[8] Analog Output
0144101470				[9] Analog Output
01701	1			[1] Port – Watchdog Counter
01703	1			[1] Port – Error Counter
01705	1			[1] Port – Invalid Command Counter
01707	1			[1] Port – Invalid Packet Counter
01709	1			[1] Port – Success Counter

ADDRESS (ABSOLUTE)	SCALE (LONG INT)	U	F	DESCRIPTION
01711	1			[1] Port – Number of Retries Counter
0171301724				[2] Port Counters
0172501736				[3] Port Counters
0173701748				[4] Port Counters
0174901758				[5] Port Counters
0175901768				[7] Port Counters
0176901778				[8] Port Counters
01851	1			LOG – n
01853	1			LOG – maximum records per sector
01855	1			LOG – current sector
01857	1			LOG – number of possible sectors
01859	1	✓	✓	LOG – Sampling Period
01861	1			LOG – Index
0190101940	1000	✓	✓	Scratchpad
0195101965	1			ESN
01967	1		✓	Serial Number – Measurement Section
01969	1		✓	Serial Number – Power Board
01971	1		✓	Serial Number – Processor Board
01973	1		\checkmark	Serial Number – Communications Board
01975	1		\checkmark	Serial Number – Analyzer Board
01977	1		· •	Serial Number – Analog I/O Board
01077	1		· •	Serial Number – Motherboard
01073	1		· •	Serial Number – DC Board
01001	1		· •	Serial Number – Oscillator
01985	1	\checkmark	· •	Final Assembly Number
01000	1		-	
20001	1000	\checkmark	\checkmark	[1] Flow Computer – Process Value (Water Content)
20001	1000	· •	· •	[1] Flow Computer – Process Temperature
20005	1000		· •	[1] Flow Computer – Pressure
20003	1000	· •	· •	[1] Flow Computer – Density
20007	1000		-	[1] Flow Computer – PDI Corrected Density
20000	1000	\checkmark	~	[1] Flow Computer – Salinity
20013	100000	· •	· •	[1] Flow Computer – Meter Factor
20015	100000	· •	· •	[1] Flow Computer – Sprinkage
20013	100000	· ·	· ·	[1] Flow Computer – Oil Density
20017	1000	•	•	[1] Flow Computer Oil Density @STP
20019	1000	•	•	[1] Flow Computer Water Density
20021	1000	•	•	[1] Flow Computer – Water Density
20025	1000	•	•	[1] Flow Computer – Water Density @STF
20025	1000			[1] Flow Computer VCF Water
20027	1000			[1] Flow Computer – VCF Water
20029	1000	./	./	[1] Flow Computer - Net Water Content
20031	1000	×	×	[1] Flow Computer – Total Flow Rate
20033	1000			[1] Flow Computer – Oil Flow Rate
20035	1000			11 Flow Computer – Water Flow Rate
20037	1000			
20039	1000			[1] Flow Computer – Gross Oli
20041	1000	ļ		[1] Flow Computer – Gross Water
20043	1000			[1] Flow Computer – Pulse Counter

ADDRESS (ABSOLUTE)	SCALE (LONG INT)	U	F	DESCRIPTION
20045	1000			[1] Flow Computer – Pulse Flow
20047	1000			[1] Flow Computer – Pulse Total
20049	1000			[1] Flow Computer – Net Flow Total
20051	1000			[1] Flow Computer – Net Flow Oil
20053	1000			[1] Flow Computer – Net Flow Water
20055	1000			[1] Flow Computer – Net Total
20057	1000			[1] Flow Computer – Net Oil
20059	1000			[1] Flow Computer – Net Water
20061	1000	~	~	[1] Flow Computer – α
2020120262				[2] Flow Computer
2040120462				[3] Flow Computer

ADDRESS (ABSOLUTE)	U	F	DESCRIPTION			
0000100016	✓	✓	Diagnostics			
0001700032	✓	~	Extended Diagnostics			
00033	✓	~	Alarm			
00034	~	✓	Error			
00035		\checkmark	Demo Mode			
00036	✓	\checkmark	Data Change Indicator (automatically clears when data is saved)			
00037			Real Time Clock is Present			
00039			Alarm High – Water Content			
00040			Alarm Low – Water Content			
00041			Alarm High – Temperature			
00042			Alarm Low – Temperature			
00043			Alarm High – Electronics Temperature			
00044			Alarm Low – Electronics Temperature			
00050	\checkmark	\checkmark	Lock & Lock Status			
00101	\checkmark	\checkmark	Select Temperature Units Degree C			
00102	\checkmark	\checkmark	Capture Oil Phase Data Record			
00103	✓	\checkmark	Capture Water Phase Data Record			
00104	\checkmark	\checkmark	Ignore Modbus Data Exceptions			
00105	\checkmark	\checkmark	Autosave on Pair Boundary in Modbus			
00106	\checkmark	\checkmark	Force Hart Command Revision 5			
00107	\checkmark	\checkmark	Enable Current Loop Output			
00111		\checkmark	Force Into Research Analyzer Mode			
00113		\checkmark	Disable the Oscillator's Heater			
00115	\checkmark	\checkmark	Enable Periodic Built-in Tests			
00116	*	*	Perform Full Self-test			
00117	*	*	System Reset			
00118	\checkmark	\checkmark	Save the User Configuration			
00119	\checkmark	\checkmark	Restore the User Configuration			
00120	*	*	Restore Factory Defaults			
00123	\checkmark	\checkmark	LOG – Enable Periodic Logging			
00124	\checkmark	\checkmark	LOG – Enable Erase on Next Cycle			
00125	\checkmark	\checkmark	LOG – Enable Configuration Logging			
00126	\checkmark	\checkmark	LOG – Enable Error Logging			
00127	*	*	System Restart			

Table A.6 - MODBUS® DISCRETE IO / COIL TABLE

ADDRESS (ABSOLUTE)	U	F	DESCRIPTION
6000160002		~	TEMP OIL MAX
6000360022		✓	TEMPS OIL
6002360102		✓	COEFF TEMP OIL
6010360104		~	SALT MAX
6010560144		~	SALTS
6014560146		~	TEMP WATER MAX
6014760176		~	TEMPS WATER
6017762576		~	COEFF SALT TEMP WATER
6257762696	~	~	Salinity (Stream)
6269762816	~	~	Oil Adjust (Stream)
6281762936	~	~	Water Adjust (Stream)
6293763056	\checkmark	✓	Water Alarm Low (Stream)
6305763176	✓	✓	Water Alarm High (Stream)

Table A.7 - MODBUS[®] COEFFICIENT TABLE (IEEE ABCD)

APPENDIX B

B.1 HART[®]

The Phase Dynamics Analyzer can communicate with HART[®] compatible hosts in a multi-drop or point-to-point network. This appendix specifies the protocol, setup and configuration settings.

HART[®] instruments communicate over a half-duplex network at 1200 baud, 8 bits, odd parity, and 1 stop bit. HART[®] 202 supports older current loops in either a point-to-point or multi-drop network. Phase Dynamics' implementation of HART[®] is user-selectable to communicate HART[®]5 or HART[®]6 according to the *Universal Command Specification Revision 5.2 or Revision 6.0* and the *Data Link Layer Specification Revision 8.1*. The transmitter revision is 2.

The three HART[®] Dynamic Variables are:

VARIABLE	DESCRIPTION	UNIT
PRIMARY	Process (Water Cut)	%
SECONDARY	Temperature	°C
TERTIARY	Emulsion Phase	(None)

A handheld device such as a Rosemount 275 communicator may be connected directly to the terminals HART on the motherboard.

IMPORTANT

In order to save the configuration, the write-protect (Device Discrete #2) must be turned on after all configuration changes are complete. You may then turn it back off. This process will force the configuration in RAM to be stored to FLASH. On some hand-held units, there may be a communication error during the save, but simply retry to continue.

Figure B.1 - Typical HART[®] Connection Diagram

B.2 COMMAND 128: READ FLOATING-POINT DEVICE PARAMETERS

This command allows a Master to request the value of up to four Floating-Point Device Parameters. In other words, a Master may request only 1, 2, 3, or 4 Floating-Point Device Parameters. The Field Device must answer these Master requests without returning Response Code 5, *Too Few Data Bytes Received*. If the Field Device receives 1, 2, or 3 Request Data Bytes, it must return only the corresponding number of Floating-Point Device Parameters (see table below).

For a list of Floating-Point Device Parameters, please refer to the Floating-Point Device Parameter Table.

Command 128 Response Based on Number of Floating-Point Device Parameters Requested

Nur Param	nber of Device neters Requested	Number of Requested Data Bytes	Number of Response Data Bytes
1		1	7
2		2	14
3		3	21
4		4	28

Request Data Bytes

Byte	Format	Description
0	Unsigned-8	Slot 0: Floating-Point Device Parameter Code
1	Unsigned-8	Slot 1: Floating-Point Device Parameter Code
2	Unsigned-8	Slot 2: Floating-Point Device Parameter Code
3	Unsigned-8	Slot 3: Floating-Point Device Parameter Code

Response Data Bytes

Byte	Format	Description
0	Unsigned-8	Slot 0: Floating-Point Device Parameter Code
1	Enum	Slot 0: Floating-Point Device Parameter Variable Classification
2	Enum	Slot 0: Floating-Point Device Parameter Unit Code
3 - 6	Float	Slot 0: Floating-Point Device Parameter Value
7	Unsigned-8	Slot 1: Floating-Point Device Parameter Code
8	Enum	Slot 1: Floating-Point Device Parameter Variable Classification
9	Enum	Slot 1: Floating-Point Device Parameter Unit Code
10 - 13	Float	Slot 1: Floating-Point Device Parameter Value
14	Unsigned-8	Slot 2: Floating-Point Device Parameter Code
15	Enum	Slot 2: Floating-Point Device Parameter Variable Classification
16	Enum	Slot 2: Floating-Point Device Parameter Unit Code
17 -20	Float	Slot 2: Floating-Point Device Parameter Value
21	Unsigned-8	Slot 3: Floating-Point Device Parameter Code
22	Enum	Slot 3: Floating-Point Device Parameter Variable Classification
23	Enum	Slot 3: Floating-Point Device Parameter Unit Code
24 - 27	Float	Slot 3: Floating-Point Device Parameter Value

Code	Class	Description
0	Success	No Command-Specific Errors
2	Error	Invalid Selection
5	Error	Too Few Data Bytes Received
32	Error	Device Busy

B.3 COMMAND 129: WRITE FLOATING-POINT DEVICE PARAMETER

This command allows a Master to set the value of one Floating-Point Device Parameter. The Floating-Point Device Parameter Unit Code received with this command does not affect the Floating-Point Device Parameter Units of the Field Device. The Floating-Point Device Parameter value will be returned in the same units as received.

For a list of Floating-Point Device Parameters, please refer to the Floating-Point Device Parameter Table.

Request Data Bytes

Byte	Format	Description
0	Unsigned-8	Floating-Point Device Parameter Code
1	Enum	Floating-Point Device Parameter Variable Classification
2	Enum	Floating-Point Device Parameter Unit Code
3 - 6	Float	Floating-Point Device Parameter Value

Response Data Bytes

Byte	Format	Description
0	Unsigned-8	Floating-Point Device Parameter Code
1	Enum	Floating-Point Device Parameter Variable Classification
2	Enum	Floating-Point Device Parameter Unit Code
3 - 6	Float	Floating-Point Device Parameter Value

Code	Class	Description
0	Success	No Command-Specific Errors
2	Error	Invalid Selection
3	Error	Value too high
4	Error	Value too low
5	Error	Too Few Data Bytes Received
7	Error	In Write-Protect Mode
12	Error	Invalid Variable Classification
18	Error	Invalid Unit Code
32	Error	Device Busy

B.4 COMMAND 130: READ DISCRETE

This command allows a Master to read one Device Discrete value. For a list of Device Discretes, please refer to the *Device Discrete Table*.

Request Data Bytes

Byte	Format	Description
0	Unsigned-8	Device Discrete Code

Response Data Bytes

Byte	Format	Description
0	Unsigned-8	Device Discrete Code
1	Bit – 0	Device Discrete Value

Code	Class	Description
0	Success	No Command-Specific Errors
2	Error	Invalid Selection
5	Error	Too Few Data Bytes Received
32	Error	Device Busy

B.5 COMMAND 131: WRITE DISCRETE

This command allows a Master to write one Device Discrete value. For a list of Device Discretes, please refer to the *Device Discrete Table*.

Request Data Bytes

Byte	Format	Description
0	Unsigned-8	Device Discrete Code
1	Bit – 0	Device Discrete Value

Response Data Bytes

Byte	Format	Description
0	Unsigned-8	Device Discrete Code
1	Bit – 0	Device Discrete Value

Code	Class	Description
0	Success	No Command-Specific Errors
2	Error	Invalid Selection
5	Error	Too Few Data Bytes Received
7	Error	In Write-Protect Mode
12	Error	Invalid Value
32	Error	Device Busy

B.6 COMMAND 132: READ INTEGER DEVICE PARAMETER

This command allows a Master to request the value of up to four Integer Device Parameters. In other words, a Master may request only 1, 2, 3, or 4 Integer Device Parameters. The Field Device must answer these Master requests without returning Response Code 5, *Too Few Data Bytes Received*. If the Field Device receives 1, 2, or 3 Request Data Bytes, it must return only the corresponding number of Integer Device Parameters (see table below).

For a list of Integer Device Parameters, please refer to the Integer Device Parameter Table.

Command 132 Response Based on Number of Integer Device Parameters Requested

Numbe	r of Device	Number of Requested	Number of Response
Paramete	rs Requested	Data Bytes	Data Bytes
1		1	5
2		2	10
3		3	15
4		4	20

Request Data Bytes

Byte	Format	Description	
0	Unsigned-8	Slot 0: Integer Device Parameter Code	
1	Unsigned-8	Slot 1: Integer Device Parameter Code	
2	Unsigned-8	Slot 2: Integer Device Parameter Code	
3	Unsigned-8	Slot 3: Integer Device Parameter Code	

Response Data Bytes

Byte	Format	Description
0	Unsigned-8	Slot 0: Integer Device Parameter Code
1	Enum	Slot 0: Integer Device Parameter Variable Classification
2	Enum	Slot 0: Integer Device Parameter Unit Code
3 – 4	Unsigned-16	Slot 0: Integer Device Parameter Value
5	Unsigned-8	Slot 1: Integer Device Parameter Code
6	Enum	Slot 1: Integer Device Parameter Variable Classification
7	Enum	Slot 1: Integer Device Parameter Unit Code
8 – 9	Unsigned-16	Slot 1: Integer Device Parameter Value
10	Unsigned-8	Slot 2: Integer Device Parameter Code
11	Enum	Slot 2: Integer Device Parameter Variable Classification
12	Enum	Slot 2: Integer Device Parameter Unit Code
13 – 14	Unsigned-16	Slot 2: Integer Device Parameter Value
15	Unsigned-8	Slot 3: Integer Device Parameter Code
16	Enum	Slot 3: Integer Device Parameter Variable Classification
17	Enum	Slot 3: Integer Device Parameter Unit Code
18 – 19	Unsigned-16	Slot 3: Integer Device Parameter Value

Code	Class	Description
0	Success	No Command-Specific Errors
2	Error	Invalid Selection
5	Error	Too Few Data Bytes Received
32	Error	Device Busy

B.7 COMMAND 133: WRITE INTEGER DEVICE PARAMETER

This command allows a Master to set the value of one Integer Device Parameter. The Integer Device Parameter Unit Code received with this command does not affect the Integer Device Parameter Units of the Field Device. The Integer Device Parameter value will be returned in the same units as received.

For a list of Integer Device Parameters, please refer to the Integer Device Parameter Table.

Request Data Bytes

Byte	Format	Description	
0	Unsigned-8	Integer Device Parameter Code	
1	Enum	Integer Device Parameter Variable Classification	
2	Enum	Integer Device Parameter Unit Code	
3 - 4	Integer-16	Integer Device Parameter Value	

Response Data Bytes

Byte	Format	Description	
0	Unsigned-8	Integer Device Parameter Code	
1	Enum	Integer Device Parameter Variable Classification	
2	Enum	Integer Device Parameter Unit Code	
3-4	Integer-16	Integer Device Parameter Value	

Code	Class	Description
0	Success	No Command-Specific Errors
2	Error	Invalid Selection
3	Error	Value too high
4	Error	Value too low
5	Error	Too Few Data Bytes Received
7	Error	In Write-Protect Mode
12	Error	Invalid Variable Classification
18	Error	Invalid Unit Code
32	Error	Device Busy

B.8 COMMAND 134: READ DEVICE VARIABLES

This command allows a Master to request the value of up to four Device Variables. In other words, a Master may request only 1, 2, 3, or 4 Device Variables. The Field Device must answer these Master requests without returning Response Code 5, *Too Few Data Bytes Received*. If the Field Device receives 1, 2, or 3 Request Data Bytes, it must return only the corresponding number of Device Variables (see table below). For a list of Device Variables, please refer to the *Device Variable Table*.

Command 134 Response Based on Number of Device Variables Requested

Number of Device Variables Requested	Number of Requested Data Bytes	Number of Response Data Bytes
1	1	9
2	2	17
3	3	25
4	4	33

Request Data Bytes

Byte	Format	Description
0	Unsigned-8	Slot 0: Device Variable Code
1	Unsigned-8	Slot 1: Device Variable Code
2	Unsigned-8	Slot 2: Device Variable Code
3	Unsigned-8	Slot 3: Device Variable Code

Response Data Bytes

Byte	Format	Description
0	Bits	Extended Field Device Status
1	Unsigned-8	Slot 0: Device Variable Code
2	Enum	Slot 0: Device Variable Classification
3	Enum	Slot 0: Device Variable Unit Code
4 – 7	Float	Slot 0: Device Variable Value
8	Bits	Slot 0: Device Variable Status
9	Unsigned-8	Slot 1: Device Variable Code
10	Enum	Slot 1: Device Variable Classification
11	Enum	Slot 1: Device Variable Unit Code
12 – 15	Float	Slot 1: Device Variable Value
16	Bits	Slot 1: Device Variable Status
17	Unsigned-8	Slot 2: Device Variable Code
18	Enum	Slot 2: Device Variable Variable Classification
19	Enum	Slot 2: Device Variable Unit Code
20 – 23	Float	Slot 2: Device Variable Value
24	Bits	Slot 2: Device Variable Status
25	Unsigned-8	Slot 3: Device Variable Code
26	Enum	Slot 3: Device Variable Variable Classification
27	Enum	Slot 3: Device Variable Unit Code
28 – 31	Float	Slot 3: Device Variable Value
32	Bits	Slot 3: Device Variable Status

Code	Class	Description
0	Success	No Command-Specific Errors
2	Error	Invalid Selection
5	Error	Too Few Data Bytes Received
32	Error	Device Busy

B.9 COMMAND 135: READ INTEGER DEVICE VARIABLES

This command allows a Master to request the value of up to four Integer Device Variables. In other words, a Master may request only 1, 2, 3, or 4 Integer Device Variables. The Field Device must answer these Master requests without returning Response Code 5, *Too Few Data Bytes Received*. If the Field Device receives 1, 2, or 3 Request Data Bytes, it must return only the corresponding number of Integer Device Variables. For a list of Integer Device Variables, please refer to the *Integer Device Variable Table*.

Command 135 Response Based on Number of Integer Device Parameters Requested

Number of Device Parameters Requested	Number of Requested Data Bytes	Number of Response Data Bytes
1	1	5
2	2	10
3	3	15
4	4	20

Request Data Bytes

Byte	Format	Description
0	Unsigned-8	Slot 0: Integer Device Parameter Code
1	Unsigned-8	Slot 1: Integer Device Parameter Code
2	Unsigned-8	Slot 2: Integer Device Parameter Code
3	Unsigned-8	Slot 3: Integer Device Parameter Code

Response Data Bytes

Byte	Format	Description
0	Unsigned-8	Slot 0: Integer Device Parameter Code
1	Enum	Slot 0: Integer Device Parameter Variable Classification
2	Enum	Slot 0: Integer Device Parameter Unit Code
3 – 4	Unsigned-16	Slot 0: Integer Device Parameter Value
5	Unsigned-8	Slot 1: Integer Device Parameter Code
6	Enum	Slot 1: Integer Device Parameter Variable Classification
7	Enum	Slot 1: Integer Device Parameter Unit Code
8 – 9	Unsigned-16	Slot 1: Integer Device Parameter Value
10	Unsigned-8	Slot 2: Integer Device Parameter Code
11	Enum	Slot 2: Integer Device Parameter Variable Classification
12	Enum	Slot 2: Integer Device Parameter Unit Code
13 – 14	Unsigned-16	Slot 2: Integer Device Parameter Value
15	Unsigned-8	Slot 3: Integer Device Parameter Code
16	Enum	Slot 3: Integer Device Parameter Variable Classification
17	Enum	Slot 3: Integer Device Parameter Unit Code
18 – 19	Unsigned-16	Slot 3: Integer Device Parameter Value

Code	Class	Description
0	Success	No Command-Specific Errors
2	Error	Invalid Selection
5	Error	Too Few Data Bytes Received
32	Error	Device Busy

B.10 HART® TABLES

B.10.1 HART[®] DYNAMIC VARIABLES

The following table lists the Dynamic Variables that are available using the HART[®] protocol.

Table B.1 - HART[®] Dynamic Variable Table

Dynamic Variable Number	Description
0	Process (Water Cut)
PRIMARY	
1	Temperature
SECONDARY	
2	Emulsion Phase – 0.0 = Oil continuous, 1.0 = Water continuous, 2.0 = Undetermined
TERTIARY	

B.10.2 HART[®] DEVICE PARAMETERS – FLOATING-POINT

The following table lists the Floating-Point Device Parameters that are available to be read and written using the HART[®] protocol. Command 128 reads one through four Floating-Point Device Parameters and Command 129 writes one Floating-Point Device Parameter.

Parameter Number	Description
0	Salinity – based on Stream Number
1	Oil Adjust (Cal. Factor) – based on Stream Number
2	Oil Frequency Index
3	Water Adjust – based on Stream Number
4	Water Frequency Index
5	Alarm Relay Set Point – based on Stream Number (Standard Electronics Only)
6	Output Loop 4 mA Point
7	Output Loop 20 mA Point
8	Temperature Adjust
9	Oil P0
10	Oil P1
11	Oil Low Frequency
12	Oil High Frequency
13	Water Low Frequency
14	Water High Frequency
15	Auto-Cal Oil Value
16	Auto-Cal Water Value
17	Calibration API
18	Density Correction A1 Coefficient
19	Density Correction A0 Coefficient
20	4 mA API Density
21	20 mA API Density
22	4 mA kg/m3 Density
23	20 mA kg/m3 Density

Table B.2 - HART[®] Floating-Point Device Parameter Table

B.10.3 HART[®] DEVICE DISCRETES

The following table lists the Device Discrete items that are available to be read and written using the HART[®] protocol. Command 130 reads one Device Discrete and Command 131 writes one Device Discrete. A value of 0 = OFF and 1 = ON.

Discrete Number	Description
0	Alarm Relay (Standard Electronics - Read Only)
1	Error Relay (Standard Electronics - Read Only)
2	Write Protect
3	Clear Gross Fluid Accumulators
4	Restore Factory Defaults
5	Restore Stream (Well) Defaults
6	Master Reset
7	Clear Analyzer Diagnostics
8	Clear Analyzer Error Code
9	Built-In Test Enable
10	Alarm Relay Greater Than or Equal to Set Point
11	Stream Select Mode (Standard Electronics)
12	Error Relay Normally Closed
13	Temperature in degrees C
14	Use HART [®] Universal Command Revision 5
15	Active Current Loop Mode
16	Capture Oil Auto-Cal Data
17	Capture Water Auto-Cal Data
18	Modbus Enable
19	Dual Pulsed Relays
20	Emulsion Phase Relay
21	Temperature Averaging
22	Data Change Indicator
23	Save Configuration

Table B.3 - HART[®] Device Discrete Table

B.10.4 HART[®] DEVICE PARAMETERS – INTEGER

The following table lists the Integer Device Parameters that are available to be read and written using the HART[®] protocol. Command 132 reads one through four Integer Device Parameters and Command 133 writes one Integer Device Parameter.

Parameter Number	Description
0	Stream Number
1	Samples to Average
2	Phase Holdover Cycles
3	Alarm Relay Delay
4	Flow Meter Type
5	Flow Volume Units
6	Flow Rate Time Units
7	Counts Per Flow Unit
8	20 mA Maximum Flow Rate Input
9	Accumulator Display Format
10	4 mA D/A Counts
11	20 mA D/A Counts
12	HART Response Delay
13	Number of Response Preambles
14	Reference Current Mode
15	Oil Auto-Cal Samples
16	Water Auto-Cal Samples
17	Density Correction Mode
18	Modbus Slave Address
19	Modbus Baud Rate
20	Modbus Parity
21	Modbus Stop Bits
22	Modbus Response Delay

Table B.4 - HART[®] Integer Device Parameter Table

B.10.5 HART[®] DEVICE VARIABLES

The following table lists the Device Variables that are available to be read using the HART[®] protocol. Command 134 reads one through four Device Variables. Command 135 reads one through four Integer Device Variables.

Variable Number	Description
0	Water Cut
1	Temperature
2	Emulsion Phase – 0.0 = Oil-continuous, 1.0 = Water-continuous, 2.0 = Undetermined
3	Analyzer Diagnostics
4	Analyzer Error Code
5	Oil Oscillator Frequency
6	Oil Oscillator Incident Power
7	Oil Oscillator Reflected Power
8	Water Oscillator Frequency
9	Water Oscillator Incident Power
10	Water Oscillator Reflected Power
11	Gross Oil Accumulator (Flow Meter Required)
12	Gross Water Accumulator (Flow Meter Required)
13	Gross Total Fluids Accumulator (Flow Meter Required)
14	Oil Flow Rate (Flow Meter Required)
15	Water Flow Rate (Flow Meter Required)
16	Total Fluid Flow Rate (Flow Meter Required)
17	Internal Temperature (Stand-alone Electronics Only)
18	Analog Input 1
19	Analog Input 1 Percent of Range
20	Analog Input 2
21	Analog Input 2 Percent of Range
22	Analog Input 3
23	Analog Input 3 Percent of Range
24	Analog Input 4
25	Analog Input 4 Percent of Range
26	Analog Input 5
27	Analog Input 5 Percent of Range
28	Analog Output 1
29	Analog Output 1 Percent of Range
30	Analog Output 2
31	Analog Output 2 Percent of Range
32	Analog Output 3
33	Analog Output 3 Percent of Range
34	Analog Output 4
35	Analog Output 4 Percent of Range
30	Analog Output 5
37	Analog Output 5 Percent of Range
<u>ა</u> ბ	Analog Output 6 Dereent of Denge
39	Analog Output & Percent of Kange
40	Analog Output 7 Analog Output 7 Percent of Pango
41	

Table B.5 - HART[®] Device Variable Table
43	Analog Output 8 Percent of Range				
44	Analog Output 9				
45	Analog Output 9 Percent of Range				
46	Flow Computer 1 – Pulse Frequency				
47	Flow Computer 1 – Water Content				
48	Flow Computer 1 – Temperature				
49	Flow Computer 1 – Pressure				
50	Flow Computer 1 – Salinity				
51	Flow Computer 1 – Density				
52	Flow Computer 1 – Oil Density				
53	Flow Computer 1 – Water Density				
54	Flow Computer 1 – Oil Flow Rate				
55	Flow Computer 1 – Water Flow Rate				
56	Flow Computer 1 – Total Flow Rate				
57	Flow Computer 1 – Floar How Nate				
58	Flow Computer 1 - Gross Water				
59	Flow Computer 1 – Gross Total				
60	Flow Computer 1 – Oloss Total				
61	Flow Computer 1 – Net Water				
62	Flow Computer 1 – Net Total				
63	Flow Computer 1 – Net Flow Rate Oil				
64	Flow Computer 1 – Net Flow Rate Water				
65	Flow Computer 1 – Net Flow Rate Total				
66	Flow Computer 2 – Pulse Frequency				
67	Flow Computer 2 – Pulse Frequency				
68	Flow Computer 2 – Temperature				
60	Flow Computer 2 – Pressure				
70	Flow Computer 2 – Salinity				
70	Flow Computer 2 – Density				
72	Flow Computer 2 – Oil Density				
73	Flow Computer 2 – Water Density				
74	Flow Computer 2 – Oil Flow Rate				
75	Flow Computer 2 – Water Flow Rate				
76	Flow Computer 2 – Total Flow Rate				
77	Flow Computer 2 – Gross Oil				
78	Flow Computer 2 – Gross Water				
79	Flow Computer 2 – Gross Total				
80	Flow Computer 2 – Net Oil				
81	Flow Computer 2 – Net Water				
82	Flow Computer 2 – Net Total				
83	Flow Computer 2 – Net Flow Rate Oil				
84	Flow Computer 2 – Net Flow Rate Uli				
85	Flow Computer 2 – Net Flow Rate Total				
86	Flow Computer 3 – Pulse Frequency				
87	Flow Computer 3 – Water Content				
88	Flow Computer 3 – Temperature				
89	Flow Computer 3 – Pressure				
90	Flow Computer 3 – Salinity				
Q1	Flow Computer 3 – Density				
92	Flow Computer 3 – Oil Density				
93	Flow Computer 3 – Water Density				

94	Flow Computer 3 – Oil Flow Rate				
95	Flow Computer 3 – Water Flow Rate				
96	Flow Computer 3 – Total Flow Rate				
97	Flow Computer 3 – Gross Oil				
98	Flow Computer 3 – Gross Water				
99	Flow Computer 3 – Gross Total				
100	Flow Computer 3 – Net Oil				
101	Flow Computer 3 – Net Water				
102	Flow Computer 3 – Net Total				
103	Flow Computer 3 – Net Flow Rate Oil				
104	Flow Computer 3 – Net Flow Rate Water				
105	Flow Computer 3 – Net Flow Rate Total				
106	CCM Gas Flow Rate				
107	CCM Gas Total				
108	CCM Gas Density				
109	Stream Select				
110	Salinity				
111	CCM Vessel Level 1				
112	CCM Vessel Level 2				
113	CCM Setpoint Level 1				
114	CCM Setpoint Level 2				
115	CCM Vessel Pressure 1				
116	CCM Vessel Pressure 2				
117	CCM Vessel Pressure Setpoint 1				
118	CCM Vessel Pressure Setpoint 2				

Variable Number	Description			
0	HART® Diagnostics			
1	Analyzer Diagnostics			
2	Analyzer Error Code			
3	Emulsion Phase 0 = Oil-continuous, 1 = Water-continuous, 2 = Undetermined			
4	Analyzer Diagnostics Enumerated			

Table B.6 - HART[®] Integer Device Variable Table

APPENDIX C

C.1 OIT ENCLOSURE HEATER - 120VAC

Phase Dynamics Part 2050-00016-000

C.1.1 DESCRIPTION

This optional heater assembly is used in cold environments to maintain a minimum temperature of 0°C inside the Phase Dynamics electronics enclosure. The heater features an on-off automatic thermostat, and draws 100 Watts from the AC line when operating.

C.1.2 WIRING INSTRUCTIONS

Attach AC line and neutral wires size 18 AWG or larger to the heater assembly terminal block as shown in the drawing below.

C.1.3 FUSE

The heater assembly is internally fused at 2 amperes. Other values should not be substituted.

Figure C.1 - Typical 120VAC Heater Assembly Terminal Block

C.2 OIT ENCLOSURE HEATER - 230VAC

Phase Dynamics Part 2050-00019-000

C.2.1 DESCRIPTION

This optional heater assembly is used in cold environments to maintain a minimum temperature of 0°C inside the Phase Dynamics electronics enclosure. The heater features an on-off automatic thermostat, and draws 100 Watts from the AC line when operating.

C.2.2 WIRING INSTRUCTIONS

Attach AC line and neutral wires size 18 AWG or larger to the heater assembly terminal block as shown in the drawing below.

C.2.3 FUSE

The heater assembly is internally fused at 1 ampere. Other values should not be substituted.

Figure C.2 - Typical 230VAC Heater Assembly Terminal Block

C.3 OIT ENCLOSURE HEATER - 24VDC

Phase Dynamics Part 2050-00069-000

C.3.1 DESCRIPTION

This optional heater assembly is used in cold environments to maintain a minimum temperature of 0°C inside the Phase Dynamics electronics enclosure. The heater features an on-off automatic thermostat, and draws 100 Watts from the DC line when operating.

C.3.2 WIRING INSTRUCTIONS

Attach 24VDC wires size 18 AWG or larger to the heater assembly terminal block as shown in the drawing below.

C.3.3 FUSE

The heater assembly is internally fused at 8 amperes. Other values should not be substituted.

Figure C.3 - Typical 24VDC Heater Assembly Terminal Block

APPENDIX D

D.1 Logging to the Internal FLASH Memory

The Analyzer has the capability to log data, changes to configuration, and events within its internal FLASH memory. This data can be used for diagnostic and trend analysis. When the end of the log has been reached, it will automatically purge the oldest records. The data can be retrieved with the optional *Data Log Fetch Tool*.

D.2 Log Record Types

There are three types of records stored within the log. The user may enable each record type.

D.2.1 Periodic Data Record

The periodic data record is entered into the log on a preset interval. This data includes:

- Diagnostics
- Time Code
- Time & Date (if available)
- Process / Raw Water Content
- Process Temperature
- Water Oscillator's Frequency
- Oil Oscillator's Frequency
- Oil Oscillator's Reflected Power

D.2.2 Configuration Data Change Record

Upon ANY configuration write event, via MODBUS[®] or HART[®], the changes are recorded for each data item that is affected. The record includes the port number, address, time code, and data value.

D.2.3 Event Record

Errors and Alarms are recorded in the same format as a periodic event, but at the time that they occur.

APPENDIX E

E.1 COMPARISON OF METHODS FOR THE DETERMINATION OF WATER IN OIL

Three methods for determination of water content are distillation, titration and centrifugal separation (shake-out). The ASTM designations for these are D4006, D4377, and D4007, respectively. Table E.1 summarizes the comparison between these methods.

Table E.1 - Comparison of Water in Crude Methods of Water Contents Less than 1%

Method	ASTM	Sample Size	Reproducibility	Repeatability
Distillation	D4006	200mL minimum	0.08%	0.11%
Titration	D4377	2-5g	0.04%	0.15%
Centrifuge	D4007	100mL	0.12%	0.28%

Repeatability is the difference between successive test results, obtained by the same operator with the same apparatus under constant operating conditions on identical test material. Reproducibility is the difference between the two single and independent test results obtained by different operators working in different laboratories on identical test material. Both distillation and titration are excellent tests to verify the water content of an oil/water emulsion. Centrifuge is not recommended for precise water contents less than 1.0%.

APPENDIX F

F.1 Installation Drawings

Attached are various installation drawings needed for proper mounting and installation of the Phase Dynamics Water in Hydrocarbon Analyzer. Please consult the factory for other drawings not included.

___ 143

INDEX

ANALYZER measurement section specifications, 12 mode, 29, 75 oscillator, 46 port term definitions, 45 ports, 37, 39, 45 power board, 44 processor, 44 self tests, 44 signal conditioning, 44 system specifications, 12 CALIBRATION full range, 48 high range, 48 low range, 47 mid range, 47 oil adjust, 47 salinity, 48, 59 centrifugal separation, 113 COMMUNICATION MODBUS, 25 configuration utility, 13 data logging, 13 density correction, 13 dielectric constant, 18 distillation, 113 emulsion, 18 emulsion phase oil continuous, 18, 57 oil external, 18 reflected power, 18 water continuous, 18, 58, 59 water external. 18 flow computation, 13 HART, 90 275 handheld, 90 communication parameters, 90 device discrete, 94, 95, 103 device parameter, 92, 93, 96, 97, 100, 102, 104 device variable, 98, 105 dynamic variable, 90, 101 LABELS attention, iii safety, ii load-pull, 14, 17, 51, 55 measurement section, 16 MODBUS, 74 ASCII, 75 autosave, 78 calibration mode, 79 data types, 74

default codes, 78 diagnostics, 76, 77, 78 floating-point, 75 integer, 75 lock/unlock, 78 long integer, 75 saving the configuration, 78 user configuration, 78 write-protection, 78 MOUNTING measurement section, 21 **OIT**, 22 O-constants, 51, 54, 55, 61 oil adjust, 51, 52, 55 oil index, 51, 52, 55, 56 OIT, 15 alarm detail, 35 alarm log, 34 analyzer information screen, 34 analyzer-specific menus, 28 automatic calibration screen, 33 backlight, 27 battery, 36 button input, 26, 27 captured data screen, 33 chassis assembly, 15 common menus. 28 communication parameters, 27 detailed diagnostics screen, 31, 32 detailed screen. 30 diagnostics screen, 31 enclosure heater, 109, 110, 111 ENTER. 27 factory info screen, 33 floppy disk icon, 29 indicators, 28 internal logging setup screen, 35 LCD contrast, 36 LCD touch screen. 15. 28 main screen, 29 **MENU**, 27 MSVE, 26, 27 parameter input, 28, 32 red exclamation icon, 29 SELECT, 27 startup screen, 29 trend buttons, 30 trend display, 30 utilities menu, 34 VALUE. 27 reflected power, 53, 57

salinity, 20, 58, 59 shake-out, 113 SUPPORT troubleshooting, 65 troubleshooting guide, 69 troubleshooting worksheet, 66 temperature compensation, 54, 60 titration, 113 WARRANTY, i Assistance, 65 Contact Info, 65 Exclusive Remedies, i Limitation, i water adjust, 58, 59 water index, 58, 59 W-constants, 58, 61