Micro Motion[®] Model 1700 and 2700

Installation Manual

Safety messages

Safety messages are provided throughout this manual to protect personnel and equipment. Read each safety message carefully before proceeding to the next step.

Micro Motion customer service

Email

- Worldwide: flow.support@emerson.com
- Asia-Pacific: APflow.support@emerson.com

North and South America		Europe and Middle East		Asia Pacific	
United States	800-522-6277	U.K.	0870 240 1978	Australia	800 158 727
Canada	+1 303-527-5200	The Netherlands	+31 (0) 318 495 555	New Zealand	099 128 804
Mexico	+41 (0) 41 7686 111	France	0800 917 901	India	800 440 1468
Argentina	+54 11 4837 7000	Germany	0800 182 5347	Pakistan	888 550 2682
Brazil	+55 15 3238 3677	Italy	8008 77334	China	+86 21 2892 9000
Venezuela	+58 26 1731 3446	Central & Eastern	+41 (0) 41 7686 111	Japan	+81 3 5769 6803
		Russia/CIS	+7 495 981 9811	Korea	+82 2 3438 4600
		Egypt	0800 000 0015	Singapore	+65 6 777 8211
		Oman	800 70101	Thailand	001 800 441 6426
		Qatar	431 0044	Malaysia	800 814 008
		Kuwait	663 299 01		
		South Africa	800 991 390		
		Saudia Arabia	800 844 9564		
		UAE	800 0444 0684		

Contents

Chapter 1	Planning	1
-	1.1 Flowmeter components	1
	1.2 Outputs option identification	5
	1.3 Environmental limits	7
	1.4 Hazardous area classifications	7
	1.5 Power requirements	7
	1.6 Orientation	8
	1.7 Accessibility for maintenance	9
Chapter 2	Mounting and sensor wiring for integral installations	11
	2.1 Mounting and sensor wiring	11
	2.2 Rotate the transmitter on the sensor (optional)	11
	2.3 Rotate the user interface on the transmitter (optional)	12
	2.4 Ground the flowmeter components	14
Chapter 3	Mounting and sensor wiring for 4-wire remote installations	15
	3.1 Mounting options	15
	3.2 Prepare the 4-wire cable	19
	3.3 Wire the transmitter to the sensor	22
	3.4 Rotate the user interface on the transmitter (optional)	24
	3.5 Ground the flowmeter components	26
Chapter 4	Mounting and sensor wiring for 9-wire remote installations	29
	4.1 Mounting options	29
	4.2 Prepare the 9-wire cable	31
	4.3 Wire the transmitter to the sensor using jacketed cable	37
	4.4 Wire the transmitter to the sensor using shielded or armored cable	40
	4.5 Rotate the user interface on the transmitter (optional)	45
	4.6 Ground the flowmeter components	47
Chapter 5	Mounting and sensor wiring for remote core processor with remote sensor	40
	Installations	
	5.1 Mounting options	
	5.2 Mount the remote core processor	53
	5.3 Prepare the 4-wire cable	
	5.4 Wire the transmitter to the remote core processor	
	5.5 Prepare the 9-wire cable	
	5.6 Wire the remote core processor to the sensor using jacketed cable	65
	5.7 Wire the remote core processor to the sensor using shielded or armored cable	69
	5.8 Rotate the user interface on the transmitter (optional)	74
	5.9 Ground the flowmeter components	75
Chapter 6	Wiring the power supply	77
	6.1 Wire the power supply	77
Chapter 7	I/O wiring for Model 1700 and Model 2700 transmitters with analog outputs	79
	7.1 Basic analog wiring	79
	7.2 HART/analog single loop wiring	80
	7.3 RS-485 point-to-point wiring	81
	7.4 HART multidrop wiring	81

Chapter 8	I/O w) wiring for Model 1700 and Model 2700 transmitters with intrinsically safe		
	outp	uts	83	
	8.1	Safe area mA output wiring	83	
	8.2	Safe area HART/analog single-loop wiring	84	
	8.3	Safe area HART multidrop wiring	85	
	8.4	Safe area frequency output/discrete output wiring	86	
	8.5	Hazardous area wiring	87	
Chapter 9	I/O w	riring for Model 2700 transmitters with configurable input/outputs	95	
	9.1	Channel configuration	95	
	9.2	mA/HART wiring	96	
	9.3	Frequency output wiring	98	
	9.4	Discrete output wiring	103	
	9.5	Discrete input wiring	107	
Chapter 10	Spec	ifications	109	
	10.1	Electrical connections	109	
	10.2	Input/output signals	110	
	10.3	Local display	111	
	10.4	Environmental limits	113	
	10.5	Physical specifications	113	

ndex117

1 Planning

Topics covered in this chapter:

- Flowmeter components
- Outputs option identification
- Environmental limits
- Hazardous area classifications
- Power requirements
- Orientation
- Accessibility for maintenance

1.1 Flowmeter components

The transmitter is one component of a Micro Motion flowmeter. The other major component is the sensor.

A third component, called the core processor, provides additional memory and processing functions.

1.1.1 Installation types

Model 1700 and Model 2700 transmitters can be installed five different ways, only one of which applies to your specific installation.

• **Integral** – The transmitter is mounted directly on the sensor. You do not need to install the transmitter separately, but you will need to connect power supply and I/O wiring.

Figure 1-1: Integral installation

• **High-temperature flexible conduit** – Some high-temperature meters come preinstalled with a flexible conduit between the sensor and the transmitter. You do not have to connect any wires between the transmitter and the sensor, but you do need to mount the electronics separately and connect power and I/O wiring to the transmitter.

Figure 1-2: High-temperature flexible conduit installation

High-temperature flexible conduit installations use the same installation instructions as 4-wire remote installations, except that the distance between the sensor and the electronics is limited by the length of the flexible conduit.

• **4-wire remote** – The transmitter is installed remotely from the sensor. You need to mount the transmitter separately from the sensor, connect a 4-wire cable between the transmitter and sensor, and connect power and I/O wiring to the transmitter.

Figure 1-3: 4-wire remote installation – painted aluminum housing

Figure 1-4: 4-wire remote installation – stainless steel housing

• **9-wire remote** – The transmitter and core processor are combined in a single unit that is installed remotely from the sensor. You need to mount the transmitter/core processor assembly separately from the sensor, connect a 9-wire cable between the transmitter/core processor, and connect power and I/O wiring to the transmitter.

• **Remote core processor with remote sensor** – A remote core process with remote sensor installation separates all three components – transmitter, core processor, and sensor – all of which are installed separately. A 4-wire cable connects the transmitter to the core processor, and a 9-wire cable connects the core processor to the sensor.

Figure 1-6: Remote core processor with remote sensor installation type

1.1.2 Maximum cable lengths

The maximum cable length between flowmeter components that are separately installed is determined by cable type. See *Table 1-1*.

Table 1-1: Maximum cable lengths

Cable type	Wire gauge	Maximum length
Micro Motion 4-wire	Not applicable	1000 ft (300 m)
Micro Motion 9-wire	Not applicable	60 ft (20 m)
User-supplied 4-wire	VDC 22 AWG (0.35 mm ²)	300 ft (90 m)
	VDC 20 AWG (0.5 mm ²)	500 ft (150 m)
	VDC 18 AWG (0.8 mm ²)	1000 ft (300 m)
	RS-485 22 AWG (0.35 mm ²) or larger	1000 ft (300 m)

1.2 Outputs option identification

You must know your transmitter's output option to correctly install the transmitter.

The transmitter's model number is on a tag on the side of the transmitter. You can use the model number to determine the transmitter's output option. The first four characters are the transmitter type. The fifth character is the installation type. The eighth character is the output option. The remaining characters are not relevant to transmitter installation.

Figure 1-7: Model code identification

Table 1-2: Installation types for Model 1700 and Model 2700 transmitters

Letter	Description
R	Remote mount 4-wire
I	Integral
C	Remote mount 9-wire (painted aluminum housing)
В	Remote core processor with remote transmitter
Μ	Remote mount 4-wire (stainless steel housing)
Р	Remote mount 9-wire (stainless steel housing)

Table 1-3: Output options for Model 1700 and Model 2700 transmitters

Letter	Description
А	Analog outputs – one mA, one frequency, one RS-485
В	Configurable I/O channels (default configuration of two mA, one frequency)
С	Configurable I/O channels (custom configuration)
D	Intrinsically safe analog outputs – two mA, one frequency/discrete
E	Intrinsically safe Foundation fieldbus H1 with standard function blocks
G	PROFIBUS-PA
N	Non-incendive Foundation fieldbus H1 with standard function blcoks
2	WirelessHART – one mA, one frequency, one RS-485
3	WirelessHART – one mA, two configurable I/O channels (custom configura- tion)
4	Intrinsically safe WirelessHART – two mA, one frequency

Letter	Description
А	Analog outputs – one mA, one frequency, one RS-485
В	Configurable I/O channels (default configuration of two mA, one frequency)
С	Configurable I/O channels (custom configuration)

Table 1-4: Output options for Model 1500 and Model 2500 transmitters

1.3 Environmental limits

Table 1-5: Environmental specifications

Туре	Value
Ambient temperature limits	-40 to +140 °F (-40 to +60 °C)
Humidity limits	5 to 95% relative humidity, non-condensing at 140 $^\circ\text{F}$ (60 $^\circ\text{C})$
Vibration limits	Meets IEC68.2.6, endurance sweep, 5 to 2000 Hz, 50 sweep cycles at 1.0 g
EMI effects	Complies with EMC Directive 2004/108/EC per EN 61326 Indus- trial Complies with NAMUR NE-21 (22.08.2007)
Ambient temperature effect on	On mA output: ±0.005% of span per °C
analog outputs	

If possible, install the transmitter in a location that will prevent direct exposure to sunlight. The environmental limits for the transmitter may be further restricted by hazardous area approvals.

1.4 Hazardous area classifications

If you plan to mount the transmitter in a hazardous area:

- Verify that the transmitter has the appropriate hazardous area approval. Each transmitter has a hazardous area approval tag attached to the transmitter housing.
- Ensure that any cable used between the transmitter and the sensor meets the hazardous area requirements.

1.5 Power requirements

Self-switching AC/DC input, automatically recognizes supply voltage

• 85 to 265 VAC, 50/60 Hz, 6 watts typical, 11 watts maximum

- 18 to 100 VDC, 6 watts typical, 11 watts maximum
- Complies with low voltage directive 2006/95/EC per EN 61010-1 (IEC 61010-1) with amendment 2, and Installation (Overvoltage) Category II, Pollution Degree 2

Note

For DC power:

- Power requirements assume a single transmitter per cable.
- At startup, the power source must provide a minimum of 1.5 amps of short-term current per transmitter.
- Length and conductor diameter of the power cable must be sized to provide 18 VDC minimum at the power terminals, at a load current of 0.5 amps.

Figure 1-8: Cable sizing formula

$$M = 18V + (R \times L \times 0.5A)$$

- M: minimum supply voltage
- R: cable resistance
- L: cable length

Table 1-6: Typical power cable resistance at 68 °F (20 °C)

Wire gauge	Resistance
14 AWG	0.0050 Ω/ft
16 AWG	0.0080 Ω/ft
18 AWG	0.0128 Ω/ft
20 AWG	0.0204 Ω/ft
2.5 mm ²	0.0136 Ω/m
1.5 mm ²	0.0228 Ω/m
1.0 mm ²	0.0340 Ω/m
0.75 mm ²	0.0460 Ω/m
0.50 mm ²	0.0680 Ω/m

1.6 Orientation

You can mount the transmitter in any orientation as long as the conduit openings do not point upward.

CAUTION!

Upward-facing conduit openings risk condensation moisture entering the transmitter housing, which could damage the transmitter.

1.7 Accessibility for maintenance

Mount the flowmeter in a location and orientation that satisfies the following conditions:

- Allows sufficient clearance to open the transmitter housing cover. Micro Motion recommends 8–10 inches (200–250 mm) clearance at the rear of the transmitter.
- Provides clear access for installing cabling to the transmitter.

Planning

2 Mounting and sensor wiring for integral installations

Topics covered in this chapter:

- Mounting and sensor wiring •
- Rotate the transmitter on the sensor (optional) •
- Rotate the user interface on the transmitter (optional) •
- Ground the flowmeter components •

2.1 Mounting and sensor wiring

There are no separate mounting requirements for integral transmitters, and no need to connect wiring between the transmitter and the sensor.

2.2 Rotate the transmitter on the sensor (optional)

In integral installations, you can rotate the transmitter on the sensor up to 360° in 90° increments.

- Α.
- В. Transmitter
- С. Transition ring
- D. Sensor

- 1. Loosen each of the four cap screws (4 mm) that fasten the transmitter to the base.
- 2. Rotate the transmitter counter-clockwise so that the cap screws are in the unlocked position.
- 3. Gently lift the transmitter straight up, disengaging it from the cap screws.

Important

Do not disconnect or damage the wires that connect the transmitter to the core processor.

4. Rotate the transmitter to the desired orientation.

Important Do not pinch or stress the wires.

The slots on the transition ring should be aligned with the cap screws.

- 5. Gently lower the transmitter onto the base, inserting the cap screws into the slots.
- 6. Rotate the transmitter clockwise so that the cap screws are in the locked position.
- 7. Tighten the cap screws, torquing to 20 to 30 in-lbs (2.3 to 3.4 N-m).

2.3 Rotate the user interface on the transmitter (optional)

The user interface on the transmitter electronics module can be rotated 90° or 180° from the original position.

- А.
- Sub-bezel В.
- С. Display module
- Display screws D.
- Ε. End-cap clamp
- F. Cap screw
- G. Display cover
- Shut off power to the unit. 1.
- 2. Remove the end-cap clamp by removing the cap screw.
- 3. Turn the display cover counterclockwise to remove it from the main enclosure.
- 4. Carefully loosen (and remove if necessary) the semicaptive display screws while holding the display module in place.
- 5. Carefully pull the display module out of the main enclosure until the sub-bezel pin terminals are disengaged from the display module.

Note

If the display pins come out of the board stack with the display module, remove the pins and reinstall them.

- 6. Rotate the display module to the desired position.
- 7. Insert the sub-bezel pin terminals into the display module pin holes to secure the display in its new position.
- 8. If you have removed the display screws, line them up with the matching holes on the sub-bezel, then reinsert and tighten them.
- 9. Place the display cover onto the main enclosure.

- 10. Turn the display cover clockwise until it is snug.
- 11. Replace the end-cap clamp by reinserting and tightening the cap screw.
- 12. Restore power to the transmitter.

2.4 Ground the flowmeter components

In an integral installation, all components are grounded together.

If national standards are not in effect, adhere to the following guidelines for grounding:

- Use copper wire, 14 AWG (2.5 mm²) or larger wire size.
- Keep all ground leads as short as possible, less than 1Ω impedance.
- Connect ground leads directly to earth, or follow plant standards.

Ground via the piping, if possible (see sensor documentation). If grounding via the piping is not possible, ground according to applicable local standards using the transmitter's internal or external ground screw.

Figure 2-4: Transmitter external grounding screw

3 Mounting and sensor wiring for 4wire remote installations

Topics covered in this chapter:

- Mounting options
- Prepare the 4-wire cable
- Wire the transmitter to the sensor
- Rotate the user interface on the transmitter (optional)
- Ground the flowmeter components

3.1 Mounting options

There are two options available for mounting the transmitter:

- Mount the transmitter to a wall or flat surface.
- Mount the transmitter to an instrument pole.

3.1.1 Mount the transmitter to a wall

- Use four 5/16-inch diameter (or M8) bolts and nuts that can withstand the process environment. Micro Motion does not supply bolts or nuts (appropriate bolts and nuts are available as an option).
- Ensure that the surface is flat and rigid, does not vibrate, or move excessively.
- 1. If desired, re-orient the transmitter on the mounting bracket.
 - a. Remove the junction end-cap from the junction housing.
 - b. Loosen each of the four cap screws (4 mm).
 - c. Rotate the bracket so that the transmitter is oriented as desired.
 - d. Tighten the cap screws, torquing to 30 to 38 in-lbs (3 to 4 N-m).
 - e. Replace the junction end-cap.

Figure 3-1: Components of 4-wire remote mount transmitter (aluminum housing)

Micro Motion[®] Model 1700 and 2700

Figure 3-2: Components of a 4-wire remote mount transmitter (stainless steel housing)

- A. End cap
- B. Cap screws
- C. Transmitter
- D. Mounting bracket
- 2. Attach the mounting bracket to the wall.

3.1.2 Mount the transmitter to an instrument pole

- Use two 5/16-inch U-bolts for 2-inch pipe, and four matching nuts, that can withstand the process environment. Micro Motion does not supply U-bolts or nuts (appropriate bolts and nuts are available as an option).
- Ensure the instrument pole extends at least 12 inches (305 mm) from a rigid base, and is no more than 2 inches (50.8 mm) in diameter.
- 1. If desired, re-orient the transmitter on the mounting bracket.
 - a. Remove the junction end-cap from the junction housing.
 - b. Loosen each of the four cap screws (4 mm).
 - c. Rotate the bracket so that the transmitter is oriented as desired.
 - d. Tighten the cap screws, torquing to 30 to 38 in-lbs (3 to 4 N-m).
 - e. Replace the junction end-cap.

Figure 3-3: Components of 4-wire remote mount transmitter (aluminum housing)

Micro Motion[®] Model 1700 and 2700

Figure 3-4: Components of a 4-wire remote mount transmitter (stainless steel housing)

- A. End cap
- B. Cap screws
- C. Transmitter
- D. Mounting bracket
- 2. Attach the mounting bracket to an instrument pole.

3.2 Prepare the 4-wire cable

Important

For user-supplied cable glands, the gland must be capable of terminating the drain wires.

Note

If you are installing unshielded cable in continuous metallic conduit with 360° termination shielding, you only need to prepare the cable – you do not need to perform the shielding procedure.

Figure 3-6: 4-wire cable shielding

3.2.1 4-wire cable types and usage

Micro Motion offers two types of 4-wire cable: shielded and armored. Both types contain shield drain wires.

The 4-wire cable supplied by Micro Motion consists of one pair of red and black 18 AWG (0.75 mm²) wires for the VDC connection, and one pair of white and green 22 AWG (0.35 mm²) wires for the RS-485 connection.

User-supplied 4-wire cable must meet the following requirements:

- Twisted pair construction.
- Applicable hazardous area requirements, if the core processor is installed in a hazardous area.
- Wire gauge appropriate for the cable length between the core processor and the transmitter.

Table 3-1: Wire gauge

Wire gauge	Maximum cable length
VDC 22 AWG (0.35 mm ²)	300 ft (90 m)
VDC 20 AWG (0.5 mm ²)	500 ft (150 m)
VDC 18 AWG (0.8 mm ²)	1000 ft (300 m)
RS-485 22 AWG (0.35 mm ²) or larger	1000 ft (300 m)

3.3 Wire the transmitter to the sensor

- 1. Connect the cable to the core processor as described in the sensor documentation.
- 2. Feed the wires from the sensor through the conduit opening.
- 3. Connect wires to the appropriate terminals on the mating connector.

Important

Never ground the shield, braid, or drain wire(s) at the transmitter.

Tip

You may find it easier to unplug the mating connector to connect the wires. If you do so, remember to firmly reseat the mating connector and tighten the mating connector screws so that the mating connector cannot accidentally come loose.

Figure 3-7: Wiring path for transmitters with aluminum housing

Figure 3-8: Wiring path for transmitters with stainless steel housing

- A. 4-wire cable
- B. Mating connector

3.4 Rotate the user interface on the transmitter (optional)

The user interface on the transmitter electronics module can be rotated 90° or 180° from the original position.

- А.
- Sub-bezel В.
- С. Display module
- Display screws D.
- Ε. End-cap clamp
- F. Cap screw
- G. Display cover
- Shut off power to the unit. 1.
- 2. Remove the end-cap clamp by removing the cap screw.
- 3. Turn the display cover counterclockwise to remove it from the main enclosure.
- 4. Carefully loosen (and remove if necessary) the semicaptive display screws while holding the display module in place.
- 5. Carefully pull the display module out of the main enclosure until the sub-bezel pin terminals are disengaged from the display module.

Note

If the display pins come out of the board stack with the display module, remove the pins and reinstall them.

- 6. Rotate the display module to the desired position.
- 7. Insert the sub-bezel pin terminals into the display module pin holes to secure the display in its new position.
- 8. If you have removed the display screws, line them up with the matching holes on the sub-bezel, then reinsert and tighten them.
- 9. Place the display cover onto the main enclosure.

- 10. Turn the display cover clockwise until it is snug.
- 11. Replace the end-cap clamp by reinserting and tightening the cap screw.
- 12. Restore power to the transmitter.

3.5 Ground the flowmeter components

In 4-wire remote installations, the transmitter and sensor are grounded separately.

CAUTION!

Improper grounding could cause inaccurate measurements or flow meter failure. Failure to comply with requirements for intrinsic safety in a hazardous area could result in an explosion.

Note

For hazardous area installations in Europe, refer to standard EN 60079-14 or national standards.

If national standards are not in effect, adhere to the following guidelines for grounding:

- Use copper wire, 14 AWG (2.5 mm²) or larger wire size.
- Keep all ground leads as short as possible, less than 1 Ω impedance.
- Connect ground leads directly to earth, or follow plant standards.
- 1. Ground the sensor according to the instructions in the sensor documentation.
- 2. Ground the transmitter according to applicable local standards, using the transmitter's internal or external ground screw.

Figure 3-11: Transmitter external grounding screw

4 Mounting and sensor wiring for 9wire remote installations

Topics covered in this chapter:

- Mounting options
- Prepare the 9-wire cable
- Wire the transmitter to the sensor using jacketed cable
- Wire the transmitter to the sensor using shielded or armored cable
- Rotate the user interface on the transmitter (optional)
- Ground the flowmeter components

4.1 Mounting options

There are two options available for mounting the transmitter:

- Mount the transmitter to a wall or flat surface.
- Mount the transmitter to an instrument pole.

4.1.1 Mount the transmitter to a wall

- Use four 5/16-inch diameter (or M8) bolts and nuts that can withstand the process environment. Micro Motion does not supply bolts or nuts (appropriate bolts and nuts are available as an option).
- Ensure that the surface is flat and rigid, does not vibrate, or move excessively.
- 1. If desired, re-orient the transmitter on the mounting bracket.
 - a. Loosen each of the four cap screws (4 mm).
 - b. Rotate the bracket so that the transmitter is oriented as desired.
 - c. Tighten the cap screws, torquing to 30 to 38 in-lbs (3 to 4 N-m).

Figure 4-1: Components of 9-wire remote mount transmitter

- A. Mounting bracket
- B. Cap screws
- C. Transmitter
- 2. Attach the mounting bracket to the wall.

4.1.2 Mount the transmitter to an instrument pole

- Use two 5/16-inch U-bolts for 2-inch pipe, and four matching nuts, that can withstand the process environment. Micro Motion does not supply U-bolts or nuts (appropriate bolts and nuts are available as an option).
- Ensure the instrument pole extends at least 12 inches (305 mm) from a rigid base, and is no more than 2 inches (50.8 mm) in diameter.
- 1. If desired, re-orient the transmitter on the mounting bracket.
 - a. Loosen each of the four cap screws (4 mm).
 - b. Rotate the bracket so that the transmitter is oriented as desired.
 - c. Tighten the cap screws, torquing to 30 to 38 in-lbs (3 to 4 N-m).

Figure 4-2: Components of 9-wire remote mount transmitter

- A. Mounting bracket
- B. Cap screws
- C. Transmitter
- 2. Attach the mounting bracket to an instrument pole.

4.2 Prepare the 9-wire cable

Micro Motion supplies three types of 9-wire cable: jacketed, shielded, and armored. The type of cable you are using determines how you will prepare the cable.

Perform the cable preparation procedure appropriate for your cable type.

4.2.1 Micro Motion 9-wire cable types and usage

Cable types

Micro Motion supplies three types of 9-wire cable: jacketed, shielded, and armored. Note the following differences between the cable types:

- Armored cable provides mechanical protection for the cable wires.
- Jacketed cable has a smaller bend radius than shielded or armored cable.
- If ATEX compliance is required, the different cable types have different installation requirements.

Cable jacket types

All cable types can be ordered with a PVC jacket or Teflon[®] FEP jacket. Teflon FEP is required for the following installation types:

- All installations that include a T-series sensor.
- All installations with a cable length of 250 ft (75 m) or greater, a nominal flow less than 20 percent, and ambient temperature changes greater than +68 °F (+20 °C).

Table 4-1: Cable jacket material and temperature ranges

	Handling temperature		Operating temperature	
Cable jacket material	Low limit	High limit	Low limit	High limit
PVC	–4 °F (−20 °C)	+194 °F (+90 °C)	−40 °F (−40 °C)	+221 °F (+105 °C)
Teflon FEP	–40 °F (–40 °C)	+194 °F (+90 °C)	–76 °F (–60 °C)	+302 °F (+150 °C)

Cable bend radii

Table 4-2: Bend radii of jacketed cable

Jacket material	Outside diameter	Minimum bend radii	
		Static (no load) condition	Under dynamic load
PVC	0.415 inches (10 mm)	3–1/8 inches (80 mm)	6–1/4 inches (159 mm)
Teflon FEP	0.340 inches (9 mm)	2–5/8 inches (67 mm)	5–1/8 inches (131 mm)

Table 4-3: Bend radii of shielded cable

Jacket material	Outside diameter	Minimum bend radii	
		Static (no load) condition	Under dynamic load
PVC	0.2 inches (14 mm)	4–1/4 inches (108 mm)	8–1/2 inches (216 mm)
Teflon FEP	0.425 inches (11 mm)	3–1/4 inches (83 mm)	6–3/8 inches (162 mm)

Jacket material	Outside diameter	Minimum bend radii	
		Static (no load) condition	Under dynamic load
PVC	0.525 inches (14 mm)	4–1/4 inches (108 mm)	8–1/2 inches (216 mm)
Teflon FEP	0.340 inches (9 mm)	3–1/4 inches (83 mm)	6–3/8 inches (162 mm)

Table 4-4: Bend radii of armored cable

Cable illustrations

Figure 4-5: Cross-section view of jacketed cable

- A. Outer jacket
- B. Drain wire (4 total)
- C. Foil shield (4 total)
- D. Filler (5 total)

- F. Foil shield (4 total)
- G. Filler (5 total)

- A. Outer jacket
- B. Stainless steel braided shield
- C. Foil shield (1 total)
- D. Inner jacket
- E. Drain wire (4 total)
- F. Foil shield (4 total)
- G. Filler (5 total)

4.3 Wire the transmitter to the sensor using jacketed cable

For ATEX installations, the jacketed cable must be installed inside a user-supplied sealed metallic conduit that provides 360° termination shielding for the enclosed cable.

CAUTION!

Sensor wiring is intrinsically safe. To keep sensor wiring intrinsically safe, keep the sensor wiring separated from power supply wiring and output wiring.

CAUTION!

Keep cable away from devices such as transformers, motors, and power lines, which produce large magnetic fields. Improper installation of cable, cable gland, or conduit could cause inaccurate measurements or flow meter failure.

A CAUTION!

Improperly sealed housings can expose electronics to moisture, which can cause measurement error or flowmeter failure. Install drip legs in conduit and cable, if necessary. Inspect and grease all gaskets and O-rings. Fully close and tighten all housing covers and conduit openings.

- 1. Run the cable through the conduit. Do not install 9-wire cable and power cable in the same conduit.
- 2. To prevent conduit connectors from seizing in the threads of the conduit openings, apply a conductive anti-galling compound to the threads, or wrap threads with PTFE tape two to three layers deep.

Wrap the tape in the opposite direction that the male threads will turn when inserted into the female conduit opening.

- 3. Remove the junction box cover and core processor end-cap.
- 4. At both the sensor and transmitter, do the following:
 - a. Connect a male conduit connector and waterproof seal to the conduit opening for 9-wire.
 - b. Pass the cable through the conduit opening for the 9-wire cable.
 - c. Insert the stripped end of each wire into the corresponding terminal at the sensor and transmitter ends, matching by color (see *Table 4-5*). No bare wires should remain exposed.

Note

For ELITE[®], H-Series, T-Series, and some F-Series sensors, match the wire to the terminal by the color identified on the inside of the sensor junction box cover.

Wire color	Sensor terminal	Transmitter terminal	Function
Black	No connection	0	Drain wires
Brown	1	1	Drive +
Red	2	2	Drive –
Orange	3	3	Temperature –
Yellow	4	4	Temperature return
Green	5	5	Left pickoff +
Blue	6	6	Right pickoff +
Violet	7	7	Temperature +
Gray	8	8	Right pickoff –
White	9	9	Left pickoff –

Table 4-5: Sensor and transmitter terminal designations

- d. Tighten the screws to hold the wire in place.
- e. Ensure integrity of gaskets, grease all O-rings, then replace the junction box and transmitter housing covers and tighten all screws, as required.

4.3.1 Sensor and transmitter terminals

Figure 4-8: ELITE, H-Series, T-Series, and some F-Series sensor terminals

- A. Violet
- B. Yellow
- C. Orange
- D. Brown
- E. White
- F. Green
- G. Red
- H. Gray
- I. Blue

Figure 4-9: F-Series, Model D, and Model DL sensor terminals

4.4

Wire the transmitter to the sensor using shielded or armored cable

For ATEX installations, shielded or armored cable must be installed with cable glands, at both the sensor and transmitter ends. Cable glands that meet ATEX requirements can be purchased from Micro Motion. Cable glands from other vendors can be used.

CAUTION!

Keep cable away from devices such as transformers, motors, and power lines, which produce large magnetic fields. Improper installation of cable, cable gland, or conduit could cause inaccurate measurements or flow meter failure.

CAUTION!

Install cable glands in the 9-wire conduit opening in the transmitter housing and the sensor junction box. Ensure that the cable drain wires and shields do not make contact with the junction box or the transmitter housing. Improper installation of cable or cable glands could cause inaccurate measurements or flow meter failure.

CAUTION!

Improperly sealed housings can expose electronics to moisture, which can cause measurement error or flowmeter failure. Install drip legs in conduit and cable, if necessary. Inspect and grease all gaskets and O-rings. Fully close and tighten all housing covers and conduit openings.

1. Identify the components of the cable gland and cable (see *Figure 4-11*).

Figure 4-11: Cable gland and cable (exploded view)

- A. Cable
- B. Sealing nut
- C. Compression nut
- D. Brass compression ring
- E. Braided shield
- F. Cable
- G. Tape or heat-shrink tubing
- H. Clamp seat (shown as integral to nipple)
- I. Nipple
- 2. Unscrew the nipple from the compression nut.
- 3. Screw the nipple into the conduit opening for the 9-wire cable. Tighten it to one turn past hand-tight.
- 4. Slide the compression ring, compression nut, and sealing nut onto the cable. Make sure the compression ring is oriented so the taper will mate properly with the tapered end of the nipple.
- 5. Pass the cable end through the nipple so the braided shield slides over the tapered end of the nipple.
- 6. Slide the compression ring over the braided shield.
- Screw the compression nut onto the nipple. Tighten the sealing nut and compression nut by hand to ensure that the compression ring traps the braided shield.
- Use a 25-mm (1-inch) wrench to tighten the sealing nut and compression nut to 20–25 foot-pounds (27–34 N-m) of torque. See *Figure 4-12* for an illustration of a complete cable gland assembly.

- E. Braided shield
- F. Brass compression ring
- G. Nipple
- 9. Remove the junction box cover and core processor end-cap.
- 10. At both the sensor and transmitter, connect the cable according to the following procedure:
 - a. Insert the stripped end of each wire into the corresponding terminal at the sensor and transmitter ends, matching by color (see *Table 4-6*). No bare wires should remain exposed.

Note

For ELITE[®], H-Series, T-Series, and some F-Series sensors, match the wire to the terminal by the color identified on the inside of the sensor junction box cover.

Table 4-6: Sensor and transmitter terminal designations

Wire color	Sensor terminal	Transmitter terminal	Function
Black	No connection	0	Drain wires
Brown	1	1	Drive +
Red	2	2	Drive –
Orange	3	3	Temperature –
Yellow	4	4	Temperature return
Green	5	5	Left pickoff +
Blue	6	6	Right pickoff +
Violet	7	7	Temperature +

Wire color	Sensor terminal	Transmitter terminal	Function
Gray	8	8	Right pickoff –
White	9	9	Left pickoff –

 Table 4-6:
 Sensor and transmitter terminal designations (continued)

- b. Tighten the screws to hold the wires in place.
- c. Ensure integrity of gaskets, grease all O-rings, then replace the junction box and transmitter housing covers and tighten all screws, as required.

4.4.1 Sensor and transmitter terminals

Figure 4-13: ELITE, H-Series, T-Series, and some F-Series sensor terminals

4.	Violet
3.	Yellow
С.	Orange
D.	Brown
Ξ.	White
Ξ.	Green
G.	Red
H.	Gray
	-

1

I. Blue

Figure 4-14: F-Series, Model D, and Model DL sensor terminals

4.5 Rotate the user interface on the transmitter (optional)

The user interface on the transmitter electronics module can be rotated 90° or 180° from the original position.

- А.
- Sub-bezel В.
- С. Display module
- Display screws D.
- Ε. End-cap clamp
- F. Cap screw
- G. Display cover
- Shut off power to the unit. 1.
- 2. Remove the end-cap clamp by removing the cap screw.
- 3. Turn the display cover counterclockwise to remove it from the main enclosure.
- 4. Carefully loosen (and remove if necessary) the semicaptive display screws while holding the display module in place.
- 5. Carefully pull the display module out of the main enclosure until the sub-bezel pin terminals are disengaged from the display module.

Note

If the display pins come out of the board stack with the display module, remove the pins and reinstall them.

- 6. Rotate the display module to the desired position.
- 7. Insert the sub-bezel pin terminals into the display module pin holes to secure the display in its new position.
- 8. If you have removed the display screws, line them up with the matching holes on the sub-bezel, then reinsert and tighten them.
- 9. Place the display cover onto the main enclosure.

- 10. Turn the display cover clockwise until it is snug.
- 11. Replace the end-cap clamp by reinserting and tightening the cap screw.
- 12. Restore power to the transmitter.

4.6 Ground the flowmeter components

In 9-wire remote installations, the transmitter/core processor assembly and sensor are grounded separately.

CAUTION!

Improper grounding could cause inaccurate measurements or flow meter failure. Failure to comply with requirements for intrinsic safety in a hazardous area could result in an explosion.

Note

For hazardous area installations in Europe, refer to standard EN 60079-14 or national standards.

If national standards are not in effect, adhere to the following guidelines for grounding:

- Use copper wire, 14 AWG (2.5 mm²) or larger wire size.
- Keep all ground leads as short as possible, less than 1 Ω impedance.
- Connect ground leads directly to earth, or follow plant standards.
- 1. Ground the sensor according to the instructions in the sensor documentation.
- Ground the transmitter/core processor assembly according to applicable local standards, using the transmitter's internal ground screw or the transmitter's external ground screw.

Figure 4-17: Transmitter internal ground screw

Figure 4-18: Transmitter external ground screw

5

Mounting and sensor wiring for remote core processor with remote sensor installations

Topics covered in this chapter:

- Mounting options
- Mount the remote core processor
- Prepare the 4-wire cable
- Wire the transmitter to the remote core processor
- Prepare the 9-wire cable
- Wire the remote core processor to the sensor using jacketed cable
- Wire the remote core processor to the sensor using shielded or armored cable
- Rotate the user interface on the transmitter (optional)
- Ground the flowmeter components

5.1 Mounting options

There are two options available for mounting the transmitter:

- Mount the transmitter to a wall or flat surface.
- Mount the transmitter to an instrument pole.

5.1.1 Mount the transmitter to a wall

- Use four 5/16-inch diameter (or M8) bolts and nuts that can withstand the process environment. Micro Motion does not supply bolts or nuts (appropriate bolts and nuts are available as an option).
- Ensure that the surface is flat and rigid, does not vibrate, or move excessively.
- 1. If desired, re-orient the transmitter on the mounting bracket.
 - a. Remove the junction end-cap from the junction housing.
 - b. Loosen each of the four cap screws (4 mm).
 - c. Rotate the bracket so that the transmitter is oriented as desired.
 - d. Tighten the cap screws, torquing to 30 to 38 in-lbs (3 to 4 N-m).
 - e. Replace the junction end-cap.

Figure 5-1: Components of 4-wire remote mount transmitter (aluminum housing)

Micro Motion[®] Model 1700 and 2700

Figure 5-2: Components of a 4-wire remote mount transmitter (stainless steel housing)

- A. End cap
- B. Cap screws
- C. Transmitter
- D. Mounting bracket
- 2. Attach the mounting bracket to the wall.

5.1.2 Mount the transmitter to an instrument pole

- Use two 5/16-inch U-bolts for 2-inch pipe, and four matching nuts, that can withstand the process environment. Micro Motion does not supply U-bolts or nuts (appropriate bolts and nuts are available as an option).
- Ensure the instrument pole extends at least 12 inches (305 mm) from a rigid base, and is no more than 2 inches (50.8 mm) in diameter.
- 1. If desired, re-orient the transmitter on the mounting bracket.
 - a. Remove the junction end-cap from the junction housing.
 - b. Loosen each of the four cap screws (4 mm).
 - c. Rotate the bracket so that the transmitter is oriented as desired.
 - d. Tighten the cap screws, torquing to 30 to 38 in-lbs (3 to 4 N-m).
 - e. Replace the junction end-cap.

Figure 5-3: Components of 4-wire remote mount transmitter (aluminum housing)

Figure 5-4: Components of a 4-wire remote mount transmitter (stainless steel housing)

- A. End cap
- B. Cap screws
- C. Transmitter
- D. Mounting bracket
- 2. Attach the mounting bracket to an instrument pole.

5.2 Mount the remote core processor

This procedure is required only for remote core processor with remote transmitter installations.

For mounting the remote core processor to a wall:

- Use four 5/16-inch diameter (or M8) bolts and nuts that can withstand the process environment. Micro Motion does not supply bolts or nuts (appropriate bolts and nuts are available as an option).
- Ensure that the surface is flat and rigid, does not vibrate, or move excessively.

For mounting the remote core processor to an instrument pole:

- Use two 5/16-inch U-bolts for 2-inch pipe, and four matching nuts, that can withstand the process environment. Micro Motion does not supply U-bolts or nuts (appropriate bolts and nuts are available as an option).
- Ensure the instrument pole extends at least 12 inches (305 mm) from a rigid base, and is no more than 2 inches (50.8 mm) in diameter.
- 1. If desired, reorient the core processor housing on the bracket.

- a. Loosen each of the four cap screws (4 mm).
- b. Rotate the bracket so that the core processor is oriented as desired.
- c. Tighten the cap screws, torquing to 30 to 38 in-lbs (3 to 4 N-m).

Figure 5-5: Components of a remote core processor

- A. Mounting bracket
- B. Cap screws
- 2. Attach the mounting bracket to an instrument pole or wall.

5.3 Prepare the 4-wire cable

Important

For user-supplied cable glands, the gland must be capable of terminating the drain wires.

Note

If you are installing unshielded cable in continuous metallic conduit with 360° termination shielding, you only need to prepare the cable – you do not need to perform the shielding procedure.

Figure 5-7: 4-wire cable shielding

4-wire cable types and usage 5.3.1

Micro Motion offers two types of 4-wire cable: shielded and armored. Both types contain shield drain wires.

The 4-wire cable supplied by Micro Motion consists of one pair of red and black 18 AWG (0.75 mm²) wires for the VDC connection, and one pair of white and green 22 AWG (0.35 mm²) wires for the RS-485 connection.

User-supplied 4-wire cable must meet the following requirements:

- Twisted pair construction.
- Applicable hazardous area requirements, if the core processor is installed in a hazardous area.
- Wire gauge appropriate for the cable length between the core processor and the transmitter.

Table 5-1: Wire gauge

Wire gauge	Maximum cable length
VDC 22 AWG (0.35 mm ²)	300 ft (90 m)
VDC 20 AWG (0.5 mm ²)	500 ft (150 m)
VDC 18 AWG (0.8 mm ²)	1000 ft (300 m)
RS-485 22 AWG (0.35 mm ²) or larger	1000 ft (300 m)

5.4 Wire the transmitter to the remote core processor

1. If you are installing a Micro Motion-supplied cable gland at the core processor housing, identify the cable gland to use for the 4-wire cable conduit opening.

Figure 5-8: Cable gland identification

- A. Cable gland used with 4-wire conduit opening
- B. 3/4"–14 NPT cable gland used with 9-wire conduit opening
- C. 1/2"–14 NPT or M20x1.5 cable glands used with transmitter
- 2. Connect the cable to the core processor as described in the sensor documentation.
- 3. Feed the wires from the remote core processor through the conduit opening.

4. Connect wires to the appropriate terminals on the mating connector.

Important

Never ground the shield, braid, or drain wire(s) at the transmitter.

Tip

You may find it easier to unplug the mating connector to connect the wires. If you do so, remember to firmly reseat the mating connector and tighten the mating connector screws so that the mating connector cannot accidentally come loose.

Figure 5-10: Wiring path for transmitters with stainless steel housing

- A. 4-wire cable
- B. Mating connector

Prepare the 9-wire cable 5.5

Micro Motion supplies three types of 9-wire cable: jacketed, shielded, and armored. The type of cable you are using determines how you will prepare the cable.

Perform the cable preparation procedure appropriate for your cable type.

5.5.1 9-wire cable types and usage

Cable types

Micro Motion supplies three types of 9-wire cable: jacketed, shielded, and armored. Note the following differences between the cable types:

- Armored cable provides mechanical protection for the cable wires.
- Jacketed cable has a smaller bend radius than shielded or armored cable.
- If ATEX compliance is required, the different cable types have different installation requirements.

Cable jacket types

All cable types can be ordered with a PVC jacket or Teflon[®] FEP jacket. Teflon FEP is required for the following installation types:

- All installations that include a T-series sensor.
- All installations with a cable length of 250 ft (75 m) or greater, a nominal flow less than 20 percent, and ambient temperature changes greater than +68 °F (+20 °C).

Table 5-2: Cable jacket material and temperature ranges

	Handling temperature		Operating temperature	
Cable jacket material	Low limit	High limit	Low limit	High limit
PVC	–4 °F (−20 °C)	+194 °F (+90 °C)	−40 °F (−40 °C)	+221 °F (+105 °C)
Teflon FEP	–40 °F (–40 °C)	+194 °F (+90 °C)	–76 °F (–60 °C)	+302 °F (+150 °C)

Cable bend radii

Table 5-3: Bend radii of jacketed cable

Jacket material	Outside diameter	Minimum bend radii	
		Static (no load) condition	Under dynamic load
PVC	0.415 inches (10 mm)	3–1/8 inches (80 mm)	6–1/4 inches (159 mm)
Teflon FEP	0.340 inches (9 mm)	2–5/8 inches (67 mm)	5–1/8 inches (131 mm)

Table 5-4: Bend radii of shielded cable

Jacket material	Outside diameter	Minimum bend radii	
		Static (no load) condition	Under dynamic load
PVC	0.2 inches (14 mm)	4–1/4 inches (108 mm)	8–1/2 inches (216 mm)
Teflon FEP	0.425 inches (11 mm)	3–1/4 inches (83 mm)	6–3/8 inches (162 mm)

Jacket material	Outside diameter	Minimum bend radii		
		Static (no load) condition	Under dynamic load	
PVC	0.525 inches (14 mm)	4–1/4 inches (108 mm)	8–1/2 inches (216 mm)	
Teflon FEP	0.340 inches (9 mm)	3–1/4 inches (83 mm)	6–3/8 inches (162 mm)	

Table 5-5: Delig Tagli of attioned cable	Table 5-5:	Bend	radii	of	armored	cable
--	------------	------	-------	----	---------	-------

Cable illustrations

- A. Outer jacket
- B. Drain wire (4 total)
- C. Foil shield (4 total)
- D. Filler (5 total)

- F. Foil shield (4 total)
- G. Filler (5 total)

- A. Outer jacket
- B. Stainless steel braided shield
- C. Foil shield (1 total)
- D. Inner jacket
- E. Drain wire (4 total)
- F. Foil shield (4 total)
- G. Filler (5 total)

5.6

Wire the remote core processor to the sensor using jacketed cable

For ATEX installations, the jacketed cable must be installed inside a user-supplied sealed metallic conduit that provides 360° termination shielding for the enclosed cable.

CAUTION!

Sensor wiring is intrinsically safe. To keep sensor wiring intrinsically safe, keep the sensor wiring separated from power supply wiring and output wiring.

CAUTION!

Keep cable away from devices such as transformers, motors, and power lines, which produce large magnetic fields. Improper installation of cable, cable gland, or conduit could cause inaccurate measurements or flow meter failure.

CAUTION!

Improperly sealed housings can expose electronics to moisture, which can cause measurement error or flowmeter failure. Install drip legs in conduit and cable, if necessary. Inspect and grease all gaskets and O-rings. Fully close and tighten all housing covers and conduit openings.

- Run the cable through the conduit. Do not install 9-wire cable and power cable in 1. the same conduit.
- 2. To prevent conduit connectors from seizing in the threads of the conduit openings, apply a conductive anti-galling compound to the threads, or wrap threads with PTFE tape two to three layers deep.

Wrap the tape in the opposite direction that the male threads will turn when inserted into the female conduit opening.

- Remove the junction box cover and core processor end-cap. 3.
- 4. At both the sensor and transmitter, do the following:
 - a. Connect a male conduit connector and waterproof seal to the conduit opening for 9-wire.
 - b. Pass the cable through the conduit opening for the 9-wire cable.
 - c. Insert the stripped end of each wire into the corresponding terminal at the sensor and transmitter ends, matching by color. No bare wires should remain exposed.

Wire color	Sensor terminal	Remote core processor terminal	Function
Black	No connection	Ground screw (see note)	Drain wires
Brown	1	1	Drive +
Red	2	2	Drive –

Wire color	Sensor terminal	Remote core processor terminal	Function
Orange	3	3	Temperature –
Yellow	4	4	Temperature return
Green	5	5	Left pickoff +
Blue	6	6	Right pickoff +
Violet	7	7	Temperature +
Gray	8	8	Right pickoff –
White	9	9	Left pickoff –

Table 5-6: Sensor and remote core processor terminal designations (continued)

Note

Ground the shield drain wires (the black wire) only on the core processor end, by connecting it to the ground screw inside the lower conduit ring. Never ground to the core processor's mounting screw. Never ground the cable at the sensor junction box.

- d. Tighten the screws to hold the wire in place.
- e. Ensure integrity of gaskets, grease all O-rings, then replace the junction-box and transmitter housing covers and tighten all screws, as required.

5.6.1 Sensor and remote core processor terminals

Figure 5-16: ELITE, H-Series, T-Series, and some F-Series sensor terminals

Figure 5-17: F-Series, Model D, and Model DL sensor terminals

Earth ground А.

- А.
- В.
- С. Yellow
- D. Orange
- Ε. Gray
- F. Blue
- G. White
- Н. Green
- Red Ι.
- J. Mounting screw
- Ground screw (black) К.
5.7 Wire t

Wire the remote core processor to the sensor using shielded or armored cable

For ATEX installations, shielded or armored cable must be installed with cable glands, at both the sensor and remote core processor ends. Cable glands that meet ATEX requirements can be purchased from Micro Motion. Cable glands from other vendors can be used.

CAUTION!

Keep cable away from devices such as transformers, motors, and power lines, which produce large magnetic fields. Improper installation of cable, cable gland, or conduit could cause inaccurate measurements or flow meter failure.

CAUTION!

Install cable glands in the 9-wire conduit opening in the transmitter housing and the sensor junction box. Ensure that the cable drain wires and shields do not make contact with the junction box or the transmitter housing. Improper installation of cable or cable glands could cause inaccurate measurements or flow meter failure.

A CAUTION!

Improperly sealed housings can expose electronics to moisture, which can cause measurement error or flowmeter failure. Install drip legs in conduit and cable, if necessary. Inspect and grease all gaskets and O-rings. Fully close and tighten all housing covers and conduit openings.

1. Identify the components of the cable gland and cable.

- A. Cable
- B. Sealing nut
- C. Compression nut
- D. Brass compression ring
- E. Braided shield
- F. Cable
- G. Tape or heat-shrink tubing
- H. Clamp seat (shown as integral to nipple)
- I. Nipple
- 2. Unscrew the nipple from the compression nut.

- 3. Screw the nipple into the conduit opening for the 9-wire cable. Tighten it to one turn past hand-tight.
- Slide the compression ring, compression nut, and sealing nut onto the cable. Make 4. sure the compression ring is oriented so the taper will mate properly with the tapered end of the nipple.
- 5. Pass the cable end through the nipple so the braided shield slides over the tapered end of the nipple.
- 6. Slide the compression ring over the braided shield.
- 7. Screw the compression nut onto the nipple. Tighten the sealing nut and compression nut by hand to ensure that the compression ring traps the braided shield.
- 8. Use a 25-mm (1-inch) wrench to tighten the sealing nut and compression nut to 20–25 foot-pounds (27–34 N-m) of torque.

- E. Braided shield
- F. Brass compression ring
- G. Nipple
- 9. Remove the junction box cover and remote core processor end-cap.
- At both the sensor and remote core processor, connect the cable according to the 10. following procedure:
 - a. Insert the stripped end of each wire into the corresponding terminal at the sensor and remote core processor ends, matching by color. No bare wires should remain exposed.

Wire color	Sensor terminal	Remote core processor terminal	Function
Black	No connection	Ground screw (see notes)	Drain wires
Brown	1	1	Drive +
Red	2	2	Drive –
Orange	3	3	Temperature –
Yellow	4	4	Temperature return
Green	5	5	Left pickoff +
Blue	6	6	Right pickoff +
Violet	7	7	Temperature +
Gray	8	8	Right pickoff –
White	9	9	Left pickoff –

Table 5-7: Sensor and remote core processor terminal designations

Notes

- Ground the shield drain wires (the black wire) only on the remote core processor end, by connecting it to the ground screw inside the lower conduit ring. Never ground to the core processor's mounting screw. Never ground the cable at the sensor junction box.
- Ground the cable braid on both ends, by terminating it inside the cable glands.
- b. Tighten the screws to hold the wires in place.
- c. Ensure integrity of gaskets, grease all O-rings, then replace the junction box cover and remote core processor end-cap and tighten all screws, as required.

5.7.1 Sensor and remote core processor terminals

Figure 5-22: ELITE, H-Series, T-Series, and some F-Series sensor terminals

Figure 5-23: F-Series, Model D, and Model DL sensor terminals

Earth ground А.

- А. Brown
- Violet В.
- С. Yellow
- D. Orange
- Ε. Gray
- F. Blue
- G. White
- Н. Green
- Red Ι.
- J. Mounting screw
- Ground screw (black) К.

5.8 Rotate the user interface on the transmitter (optional)

The user interface on the transmitter electronics module can be rotated 90° or 180° from the original position.

Figure 5-26: Display components Δ В С G Ď E Α. Transmitter housing Sub-bezel В. С. Display module Display screws D. Ε. End-cap clamp F. Cap screw

- G. Display cover
- 1. Shut off power to the unit.
- 2. Remove the end-cap clamp by removing the cap screw.
- 3. Turn the display cover counterclockwise to remove it from the main enclosure.
- 4. Carefully loosen (and remove if necessary) the semicaptive display screws while holding the display module in place.
- 5. Carefully pull the display module out of the main enclosure until the sub-bezel pin terminals are disengaged from the display module.

Note

If the display pins come out of the board stack with the display module, remove the pins and reinstall them.

- 6. Rotate the display module to the desired position.
- 7. Insert the sub-bezel pin terminals into the display module pin holes to secure the display in its new position.
- 8. If you have removed the display screws, line them up with the matching holes on the sub-bezel, then reinsert and tighten them.
- 9. Place the display cover onto the main enclosure.
- 10. Turn the display cover clockwise until it is snug.
- 11. Replace the end-cap clamp by reinserting and tightening the cap screw.
- 12. Restore power to the transmitter.

5.9 Ground the flowmeter components

In a remote core processor with remote sensor installation, the transmitter, remote core processor, and sensor are all grounded separately.

CAUTION!

Improper grounding could cause inaccurate measurements or flow meter failure. Failure to comply with requirements for intrinsic safety in a hazardous area could result in an explosion.

If national standards are not in effect, adhere to the following guidelines for grounding:

- Use copper wire, 14 AWG (2.5 mm²) or larger wire size.
- Keep all ground leads as short as possible, less than 1Ω impedance.
- Connect ground leads directly to earth, or follow plant standards.
- 1. Ground the sensor according to the instructions in the sensor documentation.
- 2. Ground the transmitter according to applicable local standards, using the transmitter's internal or external ground screw.

Figure 5-27: Transmitter internal grounding screw

Figure 5-28: Transmitter external grounding screw

3. Ground the remote core processor according to applicable local standards, using the remote core processor's internal ground screw.

6 Wiring the power supply

6.1 Wire the power supply

A user-supplied switch may be installed in the power supply line. For compliance with low-voltage directive 2006/95/EC (European installations), a switch in close proximity to the transmitter is required.

- 1. Remove the transmitter housing cover.
- 2. Open the warning flap.
- 3. Connect the power supply wires to terminals 9 and 10.

Terminate the positive (line) wire on terminal 10 and the return (neutral) wire on terminal 9.

- A. Warning flap
- B. Equipment ground
- C. Power supply wiring terminals (9 and 10)
- 4. Ground the power supply using the equipment ground, also under the warning flap.

Wiring the power supply

 I/O wiring for Model 1700 and Model 2700 transmitters with analog outputs

Topics covered in this chapter:

- Basic analog wiring
- HART/analog single loop wiring
- RS-485 point-to-point wiring
- HART multidrop wiring

7.1 Basic analog wiring

7.2 HART/analog single loop wiring

Note

For HART communications:

- 600 Ω maximum loop resistance
- 250 Ω minimum loop resistance

Figure 7-2: HART/analog single loop wiring

7.3 RS-485 point-to-point wiring

7.4 HART multidrop wiring

Тір

For optimum HART communication, single-point ground the output loop to an instrument-grade ground.

8

I/O wiring for Model 1700 and Model 2700 transmitters with intrinsically safe outputs

Topics covered in this chapter:

- Safe area mA output wiring
- Safe area HART/analog single-loop wiring
- Safe area HART multidrop wiring
- Safe area frequency output/discrete output wiring
- Hazardous area wiring

8.1 Safe area mA output wiring

Figure 8-1: Safe area mA output wiring

Figure 8-2: Safe area mA output load resistance values

8.2 Safe area HART/analog single-loop wiring

- A. VDC
- B. R_{load} (250–600 Ω resistance)
- C. HART-compatible host or controller

Figure 8-4: Safe area mA output load resistance values

8.3 Safe area HART multidrop wiring

Тір

For optimum HART communication, single-point ground the output loop to an instrument-grade ground.

- E. SMART FAMILY transmitter
- F. 24 VDC loop power supply required for HART 4–20 mA passive transmitters

8.4 Safe area frequency output/discrete output wiring

Figure 8-7: Safe area frequency output/discrete output load resistance values

8.5 Hazardous area wiring

Information provided about I.S. barriers is intended as an overview. Application-specific or product-specific questions should be addressed to the barrier manufacturer or Micro Motion.

DANGER!

Hazardous voltage can cause severe injury or death. Shut off the power before wiring transmitter outputs.

DANGER!

Improper wiring in a hazardous environment can cause an explosion. Install the transmitter only in an area that complies with the hazardous classification tag on the transmitter.

Parameter	4–20 mA	Frequency/discrete
Voltage (U _i)	30 V	30 V
Current (l _i)	300 mA	100 mA
Power (P _i)	1.0 W	0.75 W

Table 8-1: Safety parameters

Parameter	4–20 mA	Frequency/discrete
Capacitance (C _i)	0.0005 μF	0.0005 μF
Inductance (L _i)	0.0 mH	0.0 mH

Table 8-1: Safety parameters (continued)

output.

Voltage	The transmitter's safety parameters require the selected barrier's open- circuit voltage to be limited to less than 30 VDC (Vmax = 30 VDC). This voltage is the combination of the maximum safety barrier voltage (typically 28 VDC) plus an additional 2 VDC for HART communications when communicating in the hazardous area.
Current	The transmitter's safety parameters require the selected barrier's short- circuit currents to sum to less than 300 mA (Imax = 300 mA) for the milliamp outputs and 100 mA (Imax = 100 mA) for the frequency/discrete

- **Capacitance** The capacitance (Ci) of the transmitter is $0.0005 \,\mu$ F. This value added to the wire capacitance (Ccable) must be lower than the maximum allowable capacitance (Ca) specified by the I.S. barrier. Use the following equation to calculate the maximum length of the cable between the transmitter and the barrier: Ci + Ccable \leq Ca
- Inductance The inductance (Li) of the transmitter is 0.0 mH. This value plus the field wiring inductance (Lcable), must be lower than the maximum allowable inductance (La) specified by the I.S. barrier. The following equation can then be used to calculate the maximum cable length between the transmitter and the barrier: Li + Lcable ≤ La

8.5.1 Hazardous area mA output wiring

Figure 8-8: Hazardous area mA output wiring Hazardous area Safe area -0 A Е I ►B ł¢ 4-20 mA \leq D ¥ ОC À V_{in} А. В. Vout С. Ground D. R_{load} Ε. **R**barrier Note

Add R_{load} and R_{barrier} to determine V_{in}.

Figure 8-9: Safe area mA output load resistance values

Hazardous area frequency/discrete output wiring using 8.5.2 galvanic isolator

Figure 8-10: Hazardous area frequency/discrete output wiring using galvanic isolator

- External power supply
- В. Vout
- С. R_{load}
- D. Galvanic isolator (see note)
- Ε. Counter

Note

The galvanic isolator shown here has an internal 1000 Ω resistor used for sensing current:

- ON > 2.1 mA
- OFF < 1.2 mA

8.5.3 Hazardous area frequency/discrete output wiring using barrier with external load resistance

Add R_{barrier} and R_{load} to determine V_{in}.

Figure 8-12: Safe area frequency output/discrete output load resistance values

9

I/O wiring for Model 2700 transmitters with configurable input/ outputs

Topics covered in this chapter:

- Channel configuration
- mA/HART wiring
- Frequency output wiring
- Discrete output wiring
- Discrete input wiring

9.1 Channel configuration

The six wiring terminals are divided into three pairs, and called Channels A, B, and C. Channel A is terminals 1 and 2; Channel B is terminals 3 and 4; and Channel C is terminals 5 and 6. Variable assignments are governed by channel configuration.

Channel	Terminals	Configuration options	Power
А	1,2	mA output with HART/Bell202	Internal
В	3,4	mA output (default)	Internal
		Frequency output	Internal or external
		Discrete output	Internal or external
С	5,6	Frequency output (default)	Internal or external
		Discrete output	Internal or external
		Discrete input	Internal or external

Table 9-1: Channel configuration

Notes

- For Channel A, the Bell 202 signal is superimposed on the mA output.
- You must provide power to the outputs when a channel is set to external power.
- When both Channel B and Channel C are configured for frequency output (dual pulse), frequency output 2 is generated from the same signal that is sent to the first frequency output. Frequency output 2 is electrically isolated but not independent.

• You cannot configure the combination of Channel B as discrete output and Channel C as frequency output.

9.2 mA/HART wiring

9.2.1 Basic mA output wiring

Figure 9-1: Basic mA output wiring

9.2.2 HART/analog single loop wiring

Note

А.

В.

For HART communications:

- 600 Ω maximum loop resistance
- 250 Ω minimum loop resistance

- А.
- В. HART-compatible host or controller

9.2.3 HART multidrop wiring

Tip

For optimum HART communication, single-point ground the output loop to an instrument-grade ground.

- E. SMART FAMILY transmitters
- F. 24 VDC loop power supply required for HART 4–20 mA passive transmitters

9.3 Frequency output wiring

9.3.1 Internally powered frequency output wiring on Channel B

Figure 9-5: Output voltage versus load resistance

9.3.2 Externally powered frequency output wiring on Channel B

CAUTION!

Exceeding 30 VDC can damage the transmitter. Terminal current must be less than 500 mA.

9.3.3 Internally powered frequency output wiring on Channel C

Figure 9-8: Internally powered frequency output wiring on Channel C

9.3.4 Externally powered frequency output wiring on Channel C

Figure 9-10: Externally powered frequency output wiring on Channel C

A CAUTION!

Exceeding 30 VDC can damage the transmitter. Terminal current must be less than 500 mA.

Figure 9-11: Recommended pull-up resistor versus supply voltage

9.4 Discrete output wiring

9.4.1 Internally powered discrete output wiring on Channel B

Figure 9-13: Output voltage versus load resistance

9.4.2 Externally powered discrete output wiring on Channel B

A CAUTION!

Exceeding 30 VDC can damage the transmitter. Terminal current must be less than 500 mA.

Figure 9-15: Recommended pull-up resistor versus supply voltage

9.4.3 Internally powered discrete output wiring on Channel C

Figure 9-17: Output voltage versus load resistance

9.4.4 Externally powered discrete output wiring on Channel C

CAUTION!

Exceeding 30 VDC can damage the transmitter. Terminal current must be less than 500 mA.

 Figure 9-19:
 Recommended pull-up resistor versus supply voltage

9.5 Discrete input wiring

9.5.1 Internally powered discrete input wiring

Externally powered discrete input wiring 9.5.2

- А.
- VDC В.
- С. Direct DC input

Power is supplied by either a PLC/other device or by direct DC input.

Table 9-2: Input voltage ranges for external power

VDC	Range
3-30	High level
0-0.8	Low level
0.8-3	Undefined

10 Specifications

Topics covered in this chapter:

- Electrical connections
- Input/output signals
- Local display
- Environmental limits
- Physical specifications

10.1 Electrical connections

Table 10-1: Electrical connections

Туре	Description
Input/output connections	Three pairs of wiring terminals for transmitter outputs. Screw connectors accept one or two solid conductors, 14 to 12 AWG (2.5 to 4.0 mm^2); or one or two stranded conductors, 22 to 14 AWG (0.34 to 2.5 mm ²).
Power connections	One pair of wiring terminals accepts AC or DC power. One internal ground lug for power-supply ground wiring. Screw connectors accept one or two solid conductors, 14 to 12 AWG (2.5 to 4.0 mm ²); or one or two stranded conductors, 22 to 14 AWG (0.34 to 2.5 mm ²).
Digital communications main- tenance connections	Two clips for temporary connection to the service port.
Core processor connection	 The transmitter has two pairs of terminals for the 4-wire connection to the core processor: One pair is used for the RS-485 connection to the core processor One pair is used to supply power to the core processor Plug terminals accept solid or stranded conductors, 24 to 12 AWG (0.40 to 3.5 mm²).
Power	 Self-switching AC/DC input, automatically recognizes supply voltage 85 to 265 VAC, 50/60 Hz, 6 watts typical, 11 watts maximum 18 to 100 VDC, 6 watts typical, 11 watts maximum Complies with low voltage directive 2006/95/EC per EN 61010-1 (IEC 61010-1) with amendment 2, and Installation (Overvoltage) Category II, Pollution Degree 2

10.2 Input/output signals

Table 10-2: Input/output signals – Model 1700 transmitter with analog outputs

Туре	Description
Output variables	Mass flowVolume flow
Inputs/outputs	One active 4–20 mA outputOne active frequency output
HART	 Bell 202 signal is superimposed on the primary milliamp output WirelessHART available via THUM adapter

Table 10-3: Input/output signals – Model 2700 transmitter with analog outputs

Туре	Description
Output variables	 Mass & volume flow Net product content / flow Temperature Density Concentration
Inputs/outputs	 Not intrinsically safe One active 4–20 mA output One active frequency output Frequency output can be configured as a discrete output
HART/WirelessHART	 Bell 202 signal is superimposed on the primary milliamp output WirelessHART available via THUM adapter HART communication is unavailable on Foundation fieldbus and PROFIBUS-PA transmitter versions

Table 10-4: Input/output signals – Model 1700 transmitter with intrinsically safe outputs

Туре	Description
Output variables	Mass flowVolume flow
Inputs/outputs	One passive 4–20 mA outputOne active frequency output
HART	 Bell 202 signal is superimposed on the primary milliamp output WirelessHART available via THUM adapter

Туре	Description
Output variables	Mass & volume flow
	Net product content / flow
	Temperature
	Density
	Concentration
Inputs/outputs	Intrinsically safe
	Two passive 4–20 mA outputs
	One passive frequency output
	Frequency output can be configured as a discrete output
HART/WirelessHART	Bell 202 signal is superimposed on the primary milliamp out- put
	WirelessHART available via THUM adapter
	 HART communication is unavailable on Foundation fieldbus and PROFIBLIS-PA transmitter versions

Table 10-5: Input/output signals – Model 2700 transmitter with intrinsically safe outputs

Table 10-6: Input/output signals – Model 2700 transmitter with configurable inputs/ outputs

Туре	Description
Output variables	 Mass & volume flow Net product content / flow Temperature Density Concentration
Inputs/outputs	 Not intrinsically safe One or two active 4–20 mA outputs One or two active/passive frequency outputs One or two active/passive discrete outputs One discrete input
HART/WirelessHART	 Bell 202 signal is superimposed on the primary milliamp output WirelessHART available via THUM adapter HART communication is unavailable on Foundation fieldbus and PROFIBUS-PA transmitter versions

10.3 Local display

The local display is an optional component. Transmitters can be ordered with or without a local display. A localized Chinese-language display is also available for purchase in China only.

Туре	Description
Local display	Standard user interface with 2-line LCD panelTwo optical switches for local operationGlass or plastic lens options
Local interface functions	 Segmented 2-line display with LCD screen with optical controls and flowmeter-status LED is standard. Suitable for hazardous area installation. Available in both backlit and non-backlit versions. Available in non-glass or non-glare tempered glass lens versions Can be rotated on transmitter, 360 degrees, in 90-degree increments. Supports English, French, German, and Spanish languages. View process variables; start, stop, and reset totalizers; view and acknowledge alarms. Zero flowmeter, Smart Meter Verification, simulate outputs, change measurement units, configure outputs, and set RS-485 communications options. Three-color LED status light on display panel indicates flowmeter condition at a glance.

Table 10-7: Local display (standard)

Table 10-8: Local display optimized for Chinese-language support (China only)

Туре	Description
Local display optimized for Chi- nese-language support	 Graphical user interface with 6-line LCD panel Three optical switches for local operation Glass lens only For purchase in China only
Local interface functions	 Segmented 6-line graphical display with LCD screen with optical controls and flowmeter-status LED is standard. Suitable for hazardous area installation. Available in both backlit and non-backlit versions. Available in glass lens version. Can be rotated on transmitter, 360 degrees, in 90-degree increments. Supports English and Chinese languages. View process variables; start, stop, and reset totalizers; view and acknowledge alarms. Zero flowmeter, Smart Meter Verification, simulate outputs, change measurement units, configure outputs, and set RS-485 communications options. Three-color LED status light on display panel indicates flowmeter condition at a glance.

10.4 Environmental limits

Table 10-9: Environmental specifications

Туре	Value
Ambient temperature limits	-40 to +140 °F (-40 to +60 °C)
Humidity limits	5 to 95% relative humidity, non-condensing at 140 $^\circ\text{F}$ (60 $^\circ\text{C})$
Vibration limits	Meets IEC68.2.6, endurance sweep, 5 to 2000 Hz, 50 sweep cycles at 1.0 g
EMI effects	Complies with EMC Directive 2004/108/EC per EN 61326 Indus- trial Complies with NAMUR NE-21 (22.08.2007)
Ambient temperature effect on analog outputs	On mA output: ±0.005% of span per °C

If possible, install the transmitter in a location that will prevent direct exposure to sunlight. The environmental limits for the transmitter may be further restricted by hazardous area approvals.

10.5 Physical specifications

Table 10-10: Physical specifications

Туре	Description
Mounting options	 Field-mount Integrally mounted to a Micro Motion F-Series or R-Series sensor Remotely mounted to any 4-wire or 9-wire Micro Motion Coriolis sensor
Housing	NEMA 4X (IP66) polyurethane-painted cast aluminum
Weight (4-wire remote-mount option)	8 lb (3.6 kg)
Weight (9-wire remote-mount option)	14 lb (6.3 kg)
Cable gland entrances	 1/2"-14 NPT or M20 × 1.5 female conduit ports for outputs and power supply 3/4"-14 NPT female conduit port for sensor/core processor cable

Figure 10-1: 4-wire remote mount transmitter dimensions (painted aluminum housing)

Figure 10-2: 9-wire remote mount transmitter dimensions (painted aluminum housing)

Figure 10-3: 4-wire and 9-wire remote mount transmitter dimensions (stainless steel housing)

Figure 10-4: Remote core processor dimensions

Index

4-wire cable
preparation 19, 54
types 21, 56
user-supplied 21, 56
9-wire cable
connecting to sensor 37, 40, 65, 69
preparation 31, 59
types and usage 33–35, 61–63

Α

AC power, *See* Power accessibility of transmitter 9 analog I/O wiring 79, 96

С

cable 4-wire cable types 21, 56 4-wire preparation 19, 54 9-wire preparation 31, 59 9-wire types and usage 33-35, 61-63 cable lengths maximum 5 channels configuration 95 configurable I/O channels 95 discrete input wiring 107, 108 discrete output wiring 103-106 frequency output wiring 98-101 mA output wiring 96 customer service contacting ii

D

DC power, See Power discrete input wiring 107, 108 discrete output hazardous area wiring 91, 92 IS wiring 86 wiring 103–106 display rotating 12, 24, 45, 74

E

environmental limits humidity 7 temperature 7 vibration 7

F

flowmeter components 1 frequency output hazardous area wiring 91,92 IS wiring 86 wiring 79,98–101

G

grounding 4-wire remote installation 26 9-wire remote installation 47 integral installation 14 remote core with remote transmitter installation 75

Η

HART IS multidrop wiring 85 IS single loop 84 multidrop wiring 81,97 single loop wiring 80,96 hazardous area classifications planning for 7 safety parameters 87 humidity environmental limit 7

installation types
 4-wire remote 1
 9-wire remote 1
 high-temperature flexible conduit 1
 integral 1
 remote core processor with remote transmitter 1
intrinsically safe output
 wiring 83
IS wiring
 discrete output 86

frequency output 86 frequency output with galvanic isolator 91 hazardous area 87,92 mA output hazardous area 89

Μ

```
mA output
hazardous area wiring 89
IS wiring 83
wiring 79,96
mounting
instrument pole 17,51
integral option 11
options 15,29,49
recommendation 15,17,49,51
remote core processor 53
wall 15,49
Mounting
instrument pole 30
wall 29
```

0

option board identifying 5 orientation of transmitter 8

Ρ

power requirements 7 wiring 77

R

rotating display 12, 24, 45, 74 transmitter on sensor 11 RS-485 wiring 81

S

safety messages ii safety parameters for hazardous area wiring 87

T

temperature environmental limit 7 terminals remote core processor 66 sensor 38, 43, 66 transmitter 38, 43 Terminals remote core processor 71 sensor 71 transmitter installation types 1 rotating on sensor 11 transmitter type identifying 5

V

vibration environmental limit 7

W

wiring 4-wire remote to sensor 22 9-wire armored cable 40, 69 9-wire jacketed cable 37, 65 9-wire shielded cable 40, 69 basic analog 79,96 discrete input 107, 108 discrete output 103-106 frequency output 98-101 galvanic isolator 91 HART IS multidrop 85 HART IS single loop 84 HART multidrop 81,97 HART single loop 80, 96 hazardous area 87, 89, 91, 92 IS barrier 92 IS discrete output 86 IS frequency output 86 IS mA output 83 power supply 77 RS-485 81 terminal reference 38, 43, 66 to sensor 11, 37, 40, 65, 69 transmitter to remote core processor 57 Wiring terminal reference 71 wiring distances maximum 5

20001700 Rev CB 2012

Micro Motion Inc. USA

Worldwide Headquarters 7070 Winchester Circle Boulder, Colorado 80301 T +1 303-527-5200 T +1 800-522-6277 F +1 303-530-8459 www.micromotion.com

Micro Motion Europe

Emerson Process Management Neonstraat 1 6718 WX Ede The Netherlands T +31 (0) 318 495 555 F +31 (0) 318 495 556 www.micromotion.nl

Micro Motion Asia

Emerson Process Management 1 Pandan Crescent Singapore 128461 Republic of Singapore T +65 6777-8211 F +65 6770-8003

Micro Motion United Kingdom

Emerson Process Management Limited Horsfield Way Bredbury Industrial Estate Stockport SK6 2SU U.K. T +44 0870 240 1978 F +44 0800 966 181

Micro Motion Japan

Emerson Process Management 1-2-5, Higashi Shinagawa Shinagawa-ku Tokyo 140-0002 Japan T +81 3 5769-6803 F +81 3 5769-6844

The Emerson logo is a trademark and service mark of Emerson Electric Co. Micro Motion, ELITE, ProLink, MVD and MVD Direct Connect marks are marks of one of the Emerson Process Management family of companies. All other marks are property of their respective owners.

