

Acoustic Monitor Field Unit User Guide

A Division of Adaptive Instruments Corp. 577 Main Street · Hudson, MA 01749 U.S.A. TEL: 800-879-6576 · 978-568-0500 FAX: 978-568-9085 Email: support@accutechinstruments.com www.accutechinstruments.com

User Manual

Acoustic Monitor Field Unit Model WI-AM

Versions 1.58 or later

🔺 Important Information to the User 🛛 🔺

- Changes or modifications not expressly approved by Adaptive Instruments Corp. may void the user's authority to operate the equipment.
- This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: 1) this device may not cause harmful interference, and 2) this device must accept any interference received, including interference that may cause undesired operation.
- This device is for mobile and fixed use only (not portable or body-worn). A separation distance of 20cm must be maintained at all times between the antenna and the body of the user and bodies of nearby persons.
- This device has been designed to operate with an antenna having a maximum gain of 9 dBd. Antenna having a higher gain is strictly prohibited per regulations of Industry Canada. The required antenna impedance is 50 ohms.
- To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (EIRP) is not more than that required for successful communication.
- The installer of this radio equipment must ensure that the antenna is located or pointed such that it does not emit RF field in excess of Health Canada limits for the general population; consult Safety Code 6, obtainable from Health Canada's website www.hc-sc.gc.ca/rpb.

FCC Certification

- This product is a frequency hopping RF transceiver module for the 900MHz ISM band, designed to meet FCC 15.247, and is used in industrial control and monitoring applications.
- The antenna is factory installed and **MUST NOT** be removed or modified by user.

Adaptive Instruments Corp. reserves the right to update or change this user guide at anytime. For the most recent version of the user guide, please check our website: www.accutechinstruments.com

© Adaptive Instruments Corp., 2005. Printed in the USA

A

 \wedge

Rev	Date	Notes	Initials
0505	5/18/2005	Updated Output, cover, Entity Drawing	TH

Accutech

A Division of Adaptive Instruments Corp. 577 Main Street • Hudson, MA 01749 USA TEL: 800-879-6576 • 978-568-0500 FAX: 978-568-9085 Email: support@accutechinstruments.com Web: www.accutechinstruments.com

Table of Contents

Section 1: Introduction	1
1.1: Using This Manual	1
1.2: About the Device	2
1.3: Unpacking	2
1.4: Software Compatibility	2 2 2 3
Section 2: In a Hurry?	3
Section 3: Installation	4
3.1: Mechanical Installation	4
3.1.1: Field Unit Positioning	4
3.1.2: Simple RF Placement Procedure	5
Section 4: General Configuration	7
4.1: Field Unit Displayed Messages	7
4.1.1: The Read-Only Sequence	7
4.2: Overall Configuration Menu Map	8 8
4.3: Setting the Field Unit Tag Name	8 9
4.4: Setting a User Password 4.5: Pagatting All Field Unit Settings	9
4.5: Resetting All Field Unit Settings	-
Section 5: Configuring the RF Communications	$-\frac{10}{10}$
5.1: RF Channel Selection 5.2: RF Baud Rate Selection	10
5.2: RF Identification Selection	10 11
Section 6: Configuring the Sampling and Transmission Rates_	_ 12
6.1: Selecting the Normal Transmission Rate	12
6.2: Selecting the Normal Sampling Rate	13
6.3: Selecting the Abnormal Transmission Rate	14
6.4: Selecting the Abnormal Sampling Rate	15
6.5: Selecting the Normal Upper and Lower Values	16
6.6: Selecting Rates, Thresholds, and Deadbands via the Software	17
Section 7: Maintaining the Field Unit	_ 18
7.1: Changing the Battery	18
Section 8: Technical Specifications	_ 19
Dimensioned Mechanical Drawing	20
Intrinsic Safety Control Drawing	21
Appendix A: Navigating the Menus	23
Appendix B: Displayed Message Definitions	24
Appendix C: Field Unit Menu Map	25

Table of Figures

3.1: Example of Incorrect Field Unit Positioning	.4
3.2: Menu Map to RSSI Mode	. 5
4.1: Field Unit Power-UP and Operations LCD Sequence	. 7
4.2: The Read-Only Sequence	. 7
4.3: Overall Configuration Menu Map	. 8
4.4: Menu Map to Tag Name Setting	. 8
4.5: Menu Map to Password Setting	. 9
4.6: Password Setting Using Wireless Instrumentation Manager	. 9
5.1: Menu Map to RF Channel Setting	10
5.2: Menu Map to Baud Rate Setting	10
5.3: Menu Map to RF ID Setting	11
6.1: Menu Map to Normal Transmission Rate Setting	12
6.2: Incorrect Sampling Rate	13
6.3: Correct Sampling Rate	13
6.4: Menu Map to Normal Sampling Rate Setting	13
6.5: Example of Abnormal Transmission Rate Setting	14
6.6: Menu Map to Abnormal Transmission Rate Setting	14
6.7: Example of Abnormal Sampling Rate Setting	15
6.8: Menu Map to Abnormal Sampling Rate Setting	15
6.9: Normal Upper and Lower Value Example	16
6.10: Menu Map to Normal Upper and Lower Value Settings	16
6.11: Condition "Chatter" Without Time Deadband	
6.12: Condition "Chatter" Elimination Due to Time Deadband	16
6.13: Sampling and Transmission Rate Selection Using the Software	17
6.14: Normal Upper and Lower Value Selection Using the Software	17
Dimensioned Mechanical Drawing	20
Intrinsic Safety Control Drawing	21

Introduction

1.1: USING THIS MANUAL

This manual is designed to assist in installing, operating, and maintaining Accutech Model WI-AM Acoustic Monitor Field Units. The manual is broken into sections as follows:

Section 2: In a Hurry?

This section summarizes what must be done in order to get the device installed, configured and in operation quickly. However, it does not provide detailed or how-to information to perform the tasks outlined.

Section 3: Installation

This section explains mechanical installation considerations; such as Field Unit placement and Field Unit Mounting.

Section 4: General Configuration

In this section general configuration options such as password protection, and selecting a user password are discussed. Also covered, is the setting of a Field Unit tag name, resetting of all Field Unit settings, and a discussion of the various messages that are displayed on the Field Unit LCD.

Section 5: Configuring the RF Communications

This section covers the setup of the Field Unit RF Communications which allow the Field Unit to achieve communication with the Base Radio. Parameters discussed are the Field Unit RF ID, the RF channel setting and Baud Rate.

Section 6: Configuring the Sampling and Transmission Rates

This section aids the user in selecting the amount of time between each sample of the process, and the time between each transmission of this sample to the Base Radio. Also discussed is the use of setting an abnormal threshold in which sampling and transmission times may change during a period when the process variable is within the abnormal region.

Section 7: Maintaining the Field Unit

This section explains how the Field Unit should be cared for once it has been placed into service. Changing the battery is also covered in this section.

Section 8: Technical Specifications

This section explains the technical specifications that are associated with this device such as power characteristics, accuracy, and operating characteristics.

1.2: ABOUT THE DEVICE

The Accutech Acoustic Monitor Field Unit is a reliable Radio Frequency (RF) transceiver coupled with an ultrasound sensor that can be used to monitor a variety of processes in hazardous and hard-to-reach areas. The time and expense of running wires often makes it difficult to measure parameters that have an economic impact on your plant operation, but the Acoustic Monitor Field Unit allows you to quickly and accurately monitor those devices at a fraction of the cost, which gives you bigger and faster returns on your instrumentation investments.

The Field Units communicate in a secure, digital protocol over a band of frequencies from 902MHz to 928MHz. This data communication technique has been the backbone of the military's secure communications protocols for many years. These devices require no wires, permits or licenses, and they are easily set up and installed right out of the box.

You can use this device for long term monitoring in remote locations, for short-term data gathering on process conditions, or to quickly test the economic viability of a new installation.

The purpose of this manual is to help you install and maintain your Accutech Acoustic Monitor Field Unit. BEFORE setting up and installing the Field Unit please setup and configure the Base Radio.

1.3: UNPACKING

Remove the Packing List and check off the actual equipment received. If you have any questions on your shipment, please call your Accutech Representative. Upon receipt of shipment, inspect the container for any signs of damage in transit. Especially take note of any evidence of rough handling. Report any apparent damage immediately to the shipping agent.

Please note that sometimes units are assembled with accessories when shipped. Inspect the shipment carefully if you think that something is missing. This is rare, as we take considerable care to pack units for shipment, but it does sometimes happen. Please give us a call and we may be able to resolve this matter quickly over the phone.

NOTE

Please note that the carrier will not honor any claims for damage unless all shipping materials are saved for their examination. If damage is found during examining and removal of the contents, save the packing material and the carton.

Software for Accutech is revised periodically. Internal device software may contain portions that are not compatible with previous versions of the Wireless Instrumentation Manager software.

To ensure software compatibility, Wireless Instrumentation Manager software version 1.56.126 or later must be used. If you believe you are experiencing software compatibility issues please call Accutech Technical Support at (978) 568-0500 or email wireless@adaptiveinstruments.com.

1.4: SOFTWARE COMPATABILITY

In a Hurry?

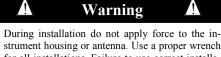
This section summarizes what must be done in order to get the device installed, configured and in operation quickly. However, it does not provide detailed or how-to information to perform the tasks outlined.

- 1. Place the Field Unit in the desired location of operation.
- 2. Turn on the Field Unit by pressing ENTER and NEXT buttons simultaneously and holding until unit powers up.
- 3. Set the RF CHAN setting equal to the Base Radio's RF Channel.
- 4. Set the BAUD RT setting equal to the Base Radio's Baud Rate.
- 5. Set the RF ID number to be a unique value between 1 and 50.
- 6. Select normal transmission rate.
- 7. Select normal sampling rate.
- 8. Select abnormal transmission rate.
- 9. Select abnormal sampling rate.
- 10. Set normal upper and lower values.
- 11. Select engineering measurement units.

If the "RF OFF" message is being displayed on the Field Unit LCD, perform the following:

• Set the RF CHAN setting equal to the Base Radio's RF Channel.

If a "NO RF" message is being displayed on the Field Unit LCD, check the following:


- Is the Field Unit set to the above listed settings?
- Is the Base Radio on?
- Do the Field Unit and Base Radio settings match? (See Section 5 of Field Unit and Base Radio User Guides)
- Are the Base Radio and Field Units unable to communicate due to obstructions or distance? (See Field Unit Manual: Field Unit Placement section)
- Did you perform the Simple RF Placement Procedure? (See Field Unit Guide: A Simple RF Placement Procedure section)

A Caution

If the Base Radio is not energized for more than 30 minutes, the Field Units should also be turned off to preserve battery life. Leaving the Field Units on when the Base Radio is not energized or out of range will cause the Field Units to transmit very frequently and drastically reduces their battery life.

Installation

3.1: Mechanical Installation

strument housing or antenna. Use a proper wrench for all installations. Failure to use correct installation procedures can cause damage to the Base Radio.

3.1.1: Field Unit Positioning

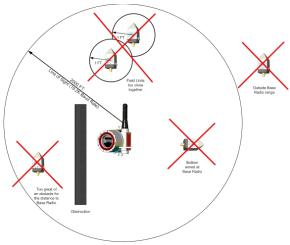


Figure 3.1: Examples of Incorrect Field Unit Positioning

In this section mechanical installation instructions are discussed for the various setup capabilities of the Acoustic Monitor Field Unit. The subsections are as follows:

3.1.1: Field Unit Positioning 3.1.2: A Simple RF Placement Procedure

The Accutech Acoustic Monitor Field Unit is a rugged device, but it provides much better performance if installed with careful consideration, as noted in this manual. It may be utilized in any ultrasound measurement service so long as care is exercised to prevent exposing the sensing elements to excess stress or temperature. Installation practices have a lot to do with these service parameters and the life that you can expect from your Accutech Acoustic Monitor Field Unit. The main considerations for installation are covered below.

Give careful consideration to the environment where you will be installing your instrument. Avoid installations that expose the device to excess temperature, high vibration, considerable shock, or exposure to dripping condensate or corrosive materials. Also avoid installing the device in an unserviceable location.

Most often these problems can be avoided with some thought at the time of installation. The practices noted below are generally recommended, but they can only act as a guideline and cannot cover all possible variations. The final installation must be made at the discretion and approval of the user. You must be the judge of the actual installation.

Dimensioned mechanical drawings for aid in mechanical installation are located in Section 8: Technical Specifications

Correct positioning of the Field Unit will ensure the best performance of the device. When planning the positioning of the Field Units there are a few parameters that must be paid attention to:

- The top of the Field Unit should point in an upward fashion. The bottom of the Field Unit should NOT point directly at the Base Radio and the Field Unit LCD should point away from the Base Radio.
- All Field Units should maintain an approximate spacing of at least one foot apart from one another.
- The line of sight range between a Field Unit and Base Radio is 2000 feet at the 19.2K baud rate setting. Note that this range is reduced by the amount of RF noise present, obstructions, and the material properties of the obstruction.
- Only place the Field Unit in ambient operating temperatures of -40°F to 185°F (-40°C to 85°C).

Figure 3.1, shown to the left, gives examples of incorrect setups according to the previously mentioned parameters.

Because there are so many setup possibilities we cannot cover them all. A correct setup would make sure that the above warnings are heeded, and that the Field Unit and Base Radio are capable of communication. The RF Placement Test section will help you to determine if you have selected the correct installation points and orientations for your application.

3.1.2: A Simple RF Placement Pro- cedure	Remember, proper placement of the Field Unit will optimize your RF communication range and capabilities. Perhaps the best test to perform before mechanically mounting the unit is a quick hand-held test.
	To perform this test you should have a good idea of where the Base Radio will be placed (for more information see Section 3 of the Base Radio User Manual). Put the Base Radio in this area and power it up. Make sure that the Base Radio and Field Unit are on the same RF Channel and Baud Rate (See Section 5). You may also have to increment the number of Field Units with which the Base Radio is communicating (See the Base Radio User Manual Section 4.3).
	Once both the Base Radio and Field Unit are set up to be on the same net- work, make sure communication is established by looking at the Field Unit LCD for the 'RF OK' message in the Read-Only Sequence (see Sec- tion 4.1.1).
	After communication has been established, the Field Unit should be placed in RSSI Diagnostic mode to determine the signal strength at the location of the equipment to be monitored. Placing the Field Unit in this mode is explained in the following section.
3.1.2.1: Field Unit RSSI Diagnostic	The Received Signal Strength Indicator (RSSI), located in the Field Unit's diagnostic menu, displays the RF signal strength in one of seven ranges. The signal strength is displayed on the LCD using a combination of '>' and '_' characters. Full signal strength is displayed as ">>>>>>>>>>>>>>" while minimum signal strength is displayed as ">". If the field unit is not communicating with the Base Radio (i.e. NO RF), all underscore characters will be displayed ("").
	The RSSI is measured every time the Field Unit receives a message from the Base Radio. The signal strength of the received message from the Base Radio is calculated during this time. The actual signal strength in dBm for each range is shown below:

>	> >		> > :		> >	
Less than	Between	Between	Between	Between	Between	Greater than
	-105 dBm &	-100 dBm &	-95 dBm &	-90 dBm &	-85 dBm &	
-105 dBm	-100 dBm	-95 dBm	-90 dBm	-85 dBm	-80 dBm	-80 dBm

To place the Field Unit in RSSI Diagnostic mode follow the menu map shown below in Figure 3.2. Note that the RSSI menu is under the DI-AGNSE menu and not the CONFIG menu.

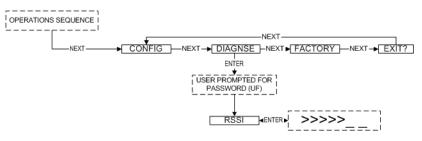


Figure 3.2: Menu Map to RSSI Mode

3.1.2.1 Continued

NOTE

While using slower baud rate increases communication distance, it also requires more time to complete a communications cycle. This may not be suitable for your application. Now that the Field Unit is in RSSI mode, bring the Field Unit close to the equipment you wish to monitor. Look at the LCD; notice the '>' will constantly fluctuate. One should estimate an average value based on these fluctuations. While the ideal signal integrity is seven arrows, the suggested fluctuating arrow ranges for the different RF Baud Rate settings are listed below:

- 4.8K Baud between 1 and 4 arrows
- 19.2K Baud between 2 and 5 arrows
- 76.8K Baud between 3 and 6 arrows

Once you have verified that you are receiving a signal, you should check to make sure the Field Unit is communicating properly with the Base Radio. To do so exit the RSSI by pressing ENTER, and then navigate to the EXIT? of the diagnostic menu and return to the Operations Sequence shown in Figure 4.1 on page 7. Once in the Operations Sequence, you will notice small arrows on the rightmost and leftmost regions of the LCD. These arrows indicate the sending and receiving of messages between the Base Radio and the Field Unit. If both arrows are moving up and down, and you do not see a NO RF message, then the position you have selected will be suitable for mounting the device.

If only one or neither of the arrows is moving, and you see a NO RF message, then you do not have satisfactory RF communication with the Base Radio. If your application allows, move the Field Unit to a different position and check again for communications. If your application only allows you to mount at this particular point, you may want to try a slower baud rate setting for an increased range (see note).

One final solution is to reposition the Base Radio. However, this may affect communications with previously installed Field Units, and if so, may require the use of a second Base Radio for your application. To select a better spot for the Base Radio, see section 3.1.1 of the Base Radio User Manual.

General Configuration

This section discusses the generalities for configuring the Field Unit via the NEXT and ENTER buttons. The subsections are as follows:

- 4.1: Field Unit Displayed Messages
- 4.1.1: The Read-Only Sequence
- 4.2: The Overall Configuration Menu Map
- 4.3: Setting the Field Unit Tag Name
- 4.4: Setting a User Password
- 4.5: Resetting All Field Unit Settings

To turn the Field Unit on, press both the NEXT and ENTER buttons and hold them for a few seconds. Upon power up, the Field Unit will display the Power-Up Sequence, and then go into the Operations Sequence. These Sequences are shown in Figure 4.1 below:

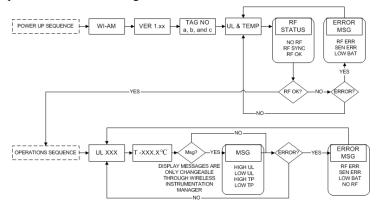
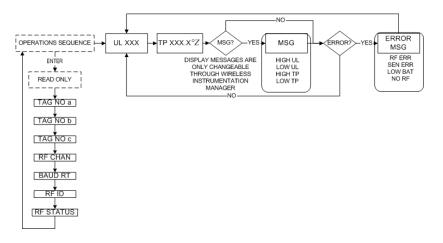


Figure 4.1: Field Unit Power-Up and Operations LCD Sequences


4.1: Field Unit Displayed Messages

NOTE

During configuration and testing, keep Field Units at least one foot apart and away from the Base Radio to ensure good communications.

4.1.1: The Read-Only Sequence

Once the Field Unit is in the Operations Sequence, a user may access the READ-ONLY Sequence without a password by simply pressing the ENTER button at any time. The Read-Only Sequence, as shown in Figure 4.2, displays extra information about the current settings of the Field Unit that are not seen during the Operations Sequence, but does not allow any changes to be made to these settings.

4.2: The Read-Only Sequence

4.2: Overall Configuration Menu Map

A complete Field Unit Menu Map is shown in Appendix C. Below is an overall view of the configuration menu to aid the user in setting up the Field Unit for proper operation.

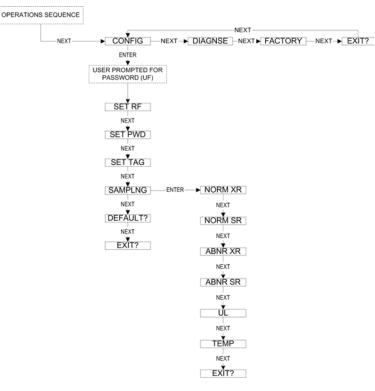


Figure 4.3: Overall Configuration Menu Map

Each Field Unit also has a user-settable Field Unit Tag Name. This tag name is displayed upon Field Unit power up, and when the Read Only Sequence is selected. The Tag Name is a 21-character string that is displayed in three separate 7-character flashes on the Field Unit LCD.

The user may choose from A-Z, 0-9, a dash ("-"), and an underscore ("_"). The underscore has a special meaning to the software inside the Field Unit. For example, if you have a Tag Name that is only 5 characters long, then you do not want to wait for the rest of the 16 characters to be displayed on the LCD. So if your Tag Name was "TRAP1", you would want to enter the Tag Name like this: "TRAP1 _____".

If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). The tag name should be entered using the Wireless Instrumentation Manager software. To do so, when the software is in the Field Unit view (See Section 8.1 of the Wireless Instrumentation Manager User Manual), right-click the Field Unit icon and select **Rename**, then enter the tag name you wish the Field Unit to have.

This tag name will then be downloaded to the Field Unit and can be displayed by pressing the ENTER button when the unit is in the Operations Sequence (See Section 4.1.1 of this manual)

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)

NOTE

The user must enter a four digit password to enter the CONFIG and DIAGNSE. The FACTORY menu is for factory use only. The default user password is 0000. For more information on the password see Section 4.4.

4.3: Setting the Field Unit Tag Name*

Figure 4.4: Menu Map to Tag Name

Using Wireless Instrumentation Manager

4.4: Setting a User Password*

Each Field Unit has a password that will lock out undesired users from making changes to the Base Radio. Any user may still view some of the Field Unit settings by pressing the ENTER key during the Operations Sequence and viewing the Read-Only Sequence.

The password is a four-digit password The factory default is 0000. If you wish to select a different password, follow the Field Unit Menu Map shown in Figure 4.5 to change it.

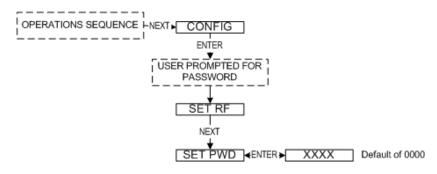


Figure 4.5: Menu Map to Password Setting

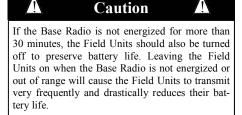
If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). The password should be entered using the Wireless Instrumentation Manager software. To do so, enter the configuration menu (See Section 9.2 of the Wireless Instrumentation Manager User Manual). Once in the configuration menu click on the **General** tab to bring up the general information as shown in Figure 4.6.

The Field Unit password for this device can be set by entering a four-digit number in the **Field Unit Password** field. Once a password has been entered, click **OK** to save and download the password to the Field Unit.

Please note that the password only protects the Field Unit from unauthorized configuration via the NEXT and ENTER buttons. The Wireless Instrumentation Manager requires a user login password to gain access to all configuration parameters. However, user accounts are available and can be set with different access levels and restrictions (For more information on user accounts see the Wireless Instrumentation Manager User Manual Section 8.4).

To reset all Field Unit settings to their default state, the user must navigate to the DEFAULT menu option in the CONFIG menu via the keypad.

Once at the default menu option pressing the ENTER button will display 'RESET?' on the LCD; which asks if the user is sure he or she wants to reset the device to its default configuration. The user will then be prompted with 'NO' on the LCD. Pressing the ENTER button while 'NO' is being displayed will NOT reset the device. Pressing the NEXT button will display 'YES' on the LCD. If the user presses the ENTER button while 'YES' is being displayed the device will be reset.


* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)

Acoustic Monitor Properties - (9-17)
General Range Sampling Rates Sampling Bands Alarms
Description
Location:
Date Installed:
Comments:
General Monitored Equipment: Field Unit Password: 0000
_ Units
Ultrasound: Counts
Temperature: *C 💌
Load from File OK Cancel

Figure 4.6: Password Setting Using Wireless Instrumentation Manager

4.5: Resetting All Field Unit Settings

Configuring the RF Communications

5.1: RF Channel Selection

NOTE

The RF Channel defines a set of frequencies on which communication takes place between the Base Radio and the Field Unit. Each RF Channel has a different set of frequencies, thus allowing the user to have multiple different wireless networks co-existing throughout the same facility.

The RF Channel can be thought of as a set of walkie-talkies. If both walkie-talkies are on channel one they can communicate. If a walkie-talkie is on channel one and the other is on channel two, they cannot communicate. Likewise, if two walkie-talkies are on channel one and two other walkie-talkies are on channel two, the walkie-talkies on channel one cannot hear what is being transmitted by the walkie-talkies on channel two.

5.2: Baud Rate Selection

NOTE

If you change the baud rate of a Field Unit, you must also change the baud rate of the Base Radio and all other Field Units that are communicating with that Base Radio to match.

In order for the Field Unit and the Base Radio to communicate, they must be on the same RF Channel and must be transmitting at the same Baud Rate. While all Field Units and Base Radios are set to default configurations at the factory, if any configuration differences are present the Base Radio will not be able to communicate with the Field Units. The subsections are as follows:

- 5.1: RF Channel Setup
- 5.2: Baud Rate Setup
- 5.3: RF Identification Setup

All Base Radios and Field Units can be set to one of 16 different communication channels. The only Field Units recognized by a particular Base Radio are the units that are on the same RF Channel as that Base Radio. This allows the user to decide which Field Units communicate with each Base Radio.

Each Field Unit comes from the factory set to the RF OFF channel. This means the Field Unit will not communicate to any Base Radio. To set the Field Unit for communication first determine the channel that you wish to use. Then follow the Field Unit menu map shown below in Figure 5.1 to configure the RF Channel.

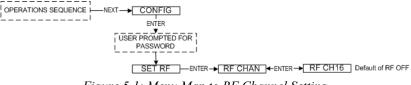


Figure 5.1: Menu Map to RF Channel Setting

Once you are in the RF Channel menu, you can increment it by pressing the next button. When selecting this value, do not choose an RF Channel that is currently being used by other Accutech Wireless Systems as this can cause communication problems.

The RF Baud Rate refers to the speed at which the Base Radio and Field Units communicate. There are three selectable settings with the fastest update times and ranges listed below:

- 4.8K– Rate of 4.8 Kbaud (Update every 20 seconds)
 - Range of 3000ft (Line of Sight)
- 19.2K- Rate of 19.2 Kbaud (Update every 5 seconds)
 Range of 2000ft to 2500ft (Line of Sight)
- 76.8K– Rate of 76.8 Kbaud (Update every 1 second) - Range of 500ft to 750ft (Line of Sight)

A faster RF Baud Rate allows the user to transmit more information in a given period of time, but it will also limit the Field Unit's range. If you need more distance out of your Field Units or are encountering difficulties by frequently losing communications, then select a slower baud rate.

Follow the Base Radio menu map shown in Figure 5.2 to configure the RF Baud Rate. The factory default is the 19.2K Baud Rate.

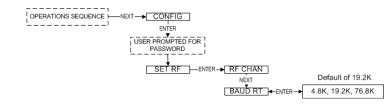


Figure 5.2: Menu Map to Baud Rate Setting

5.3: RF Identification Selection

Each Field Unit is identified by the Base Radio and software according to the RF Identification (ID) given to that particular unit. Two Field Units CANNOT have the same ID and be on the same RF Channel (if you do not know the RF Channel see section 5.1). If the Field Unit is in the Operations Sequence, pressing the ENTER button displays the Read-Only Sequence on the LCD, which displays the ID of that unit like this: ID 3.

All Field Units in your system are set to a default ID number upon shipment. For example, if you have ordered a Base Radio and three Field Units, the Field Units will be configured to ID's 0, 0 and 0. You must set these units to three different IDs between 1 and 50. The Field Units in this example could be set to RF IDs 1, 2 and 3.

First determine the ID's you'd like to give each unit. Then follow the menu map shown in Figure 5.3 to configure the RF ID. The factory default is RF ID 0, which disables the RF communication of the unit.

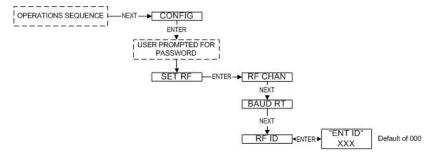


Figure 5.3: Menu Map to RF ID Setting

Once you have selected the RF ID you wish to use for this particular Field Unit, save and exit the menus and return to the Operations Sequence.

The Field Unit should now be successfully configured to the Base Radio. To check this, press ENTER while the Field Unit is in the Operations Sequence for the Read-Only Sequence to be displayed. You may see an RF SYNC message displayed on the Field Unit LCD. This means that the Field Unit and Base Radio are attempting to synchronize communications. If this is successful the RF Status will display an RF OK message. If this is unsuccessful the RF Status will display a NO RF message.

Also notice the two small arrows on either side of the LCD; if they are fluctuating up and down, that indicates the Field Unit and Base Radio are successfully communicating. If only one or none of the arrows are moving then RF communication is unsuccessful.

Configuring the Sampling and Transmission Rates

The Acoustic Monitor Field Unit is very versatile with many programmable features and can be used in numerous different applications. Because no two applications are the same, some configuration is required for each unit. This section will walk you through the initial configuration of these sample and transmit settings. The subsections are as follows:

- 6.1: Selecting the Normal Transmission Rate
- 6.2: Selecting the Normal Sampling Rate
- 6.3: Selecting the Abnormal Transmission Rate
- 6.4: Selecting the Abnormal Sampling Rate
- 6.5: Selecting the Normal Upper and Lower Values
- 6.6: Selecting Rates, Thresholds, and Deadbands via the Software

6.1: Selecting the Normal Transmission Rate*

The Field Unit is in "sleep" mode to save power during the operations sequence. This mode turns off most of the electronics on the unit, with the exception of the LCD, in order to preserve battery life. The Field Unit will then 'wake up' every **Normal Sampling Period** and take the necessary current/voltage readings. The Field Unit will then transmit these readings to the Base Radio on an interval determined by the **Normal Transmission Rate.**

Notice that the fastest update rate of the Normal Transmission Rate is dependent on the baud rate setting you selected earlier (see section 5.2). The transmission rates cannot update data faster than their communication speed allows. Thus, if you selected the 19.2K Baud Rate setting, your fastest transmission rate will be 5 seconds and no faster. The Field Unit automatically determines these settings and adjusts the menu options accordingly. A complete table of these parameters is shown in the table in the following section.

In order to properly set the Normal Transmission Rate, you must first determine how often you need updates from the Field Unit when the device being monitored is operating within what you consider to be normal operating conditions for that process variable. You have a selectable range of 1-5, 10, 15, 20, 40 seconds and 1 minute. Then, follow the menu map shown in Figure 6.1 to configure the Normal Transmission Rate. The factory default is 10 seconds.

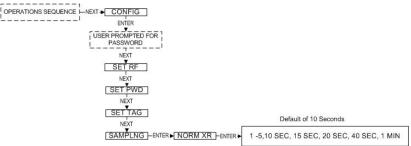


Figure 6.1: Menu Map to Normal Transmission Rate Setting

Using Wireless Instrumentation Manager

If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). An explanation of how to select the Normal Transmission Rate using the Wireless Instrumentation Manager software can be found in section 6.6.

6.2: Selecting the Normal Sampling Rate*

As previously mentioned, the Field Unit is in "sleep" mode to save power during the operations sequence. This mode turns off most of the electronics on the unit (with the exception of the LCD) in order to preserve battery life. The Field Unit will then 'wake up' for every **Normal Sampling Period** and take the necessary current/voltage readings.

Notice that the minimum speed of the Normal Sampling Rate is dependent on the Normal Transmission Rate setting you selected earlier (see section 6.1). The Sampling Rates cannot be set to a slower time interval than the time interval at which the Field Unit is required to transmit updates. Thus, if you set the Normal Transmit Rate setting to be 10 Seconds, the Normal Sampling Rate must be set to 10 Seconds or faster. A complete table of these parameters is shown below.

Baud Rate	76.8K	19.2K	4.8K
(communication range)	500-750 feet	2000-2500 feet	3000 feet
(fastest speed of updates)	1 Second	5 Seconds	20 Seconds
Normal and Abnormal	1 Second or	5 Seconds or	20 Seconds or
Transmit Rates	Greater	Greater	Greater
Normal and Abnormal	Equal to Transmit	Equal to Transmit	Equal to Transmit
Sampling Rates	Rate or Less	Rate or Less	Rate or Less

Input (Volts) 10 8 6 Normal Sample 4 2 0 0 0 Time (min), With a Normal Sampling Rate of 30 Seconds

Figure 6.2: Incorrect Sampling Rate

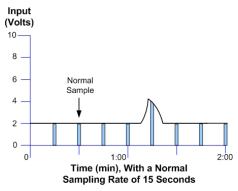


Figure 6.3: Correct Sampling Rate

Figure 6.4: Menu Map to Normal Sampling Rate Setting

In order to properly set the Normal Sampling Rate, first determine how often updates are needed from the Field Unit when the device being monitored is operating normally. You have a selectable range of 1-30 seconds. Note, however, the more frequently the Field Unit wakes up to check the monitored device, the faster you will use up the battery life of the Field Unit.

Figure 6.2 is an example of what happens when the Normal Sampling Rate is too slow for the device being sampled. Notice how the rise in the voltage level falls between two normal samples, and thus goes completely undetected.

Figure 6.3 is an example of what happens when the normal sampling rate is correctly set for the device that is being monitored. Notice how this setting makes it possible to sample the rise in the voltage level.

Once you have decided on the proper Normal Sampling Rate follow the Field Unit menu map shown in Figure 6.4 to select this setting. The factory default is 1 second.

Using Wireless Instrumentation Manager

If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). An explanation of how to select the Normal Sampling Rate using the Wireless Instrumentation Manager software can be found in section 6.6.

6.3: Selecting the Abnormal Transmission Rate*

NOTE

If you do not need more or less frequent samples and updates from a Field Unit for a given application, then there is no need to complete this section. Simply set the Normal Transmission and Sampling Rates to the desired speeds, and make sure that the Normal Upper and Lower Values are configured to **Disabled**.

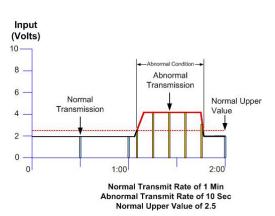


Figure 6.5: Example of Abnormal Transmission Rate Setting

The **Abnormal Transmission Rate** is identical to the Normal Transmission Rate with one exception. The Abnormal Transmission Rate only applies while the Field Unit is in an Abnormal condition (see Setting Normal Upper and Lower Values section 6.5). This allows you to increase or decrease the frequency of information you receive depending on the operating conditions of the device being monitored.

In order to properly set the Abnormal Transmission Rate, you must first determine how often the Field Unit needs to update its data about the device being monitored while in an Abnormal condition. You have a selectable range of 1-10, 15, 20, 40 seconds and 1 minute. Figure 6.5 is an example of how the device switches transmission rates from Normal Transmission Rate to Abnormal Transmission Rate. Note how the first abnormal transmission is sent immediately when the Normal Upper Value set point is exceeded. The next transmission will then follow this immediate transmission by 10 seconds (or whatever the Abnormal Transmission Rate is set to). The transmissions will continue at this interval until the process value drops below the Normal Upper Value set point.

Once the process value drops below this set point, another transmission is made to the Base Radio. The transmissions will then be made at the Normal Transmission Rate of one minute (or whatever the Normal Transmission Rate is set to) from the time of the last abnormal transmission.

The user should also note that the transmission time depends on the sampling rate, and when the process variable is sampled. If the Normal Sampling Rate is 30 seconds, then the process variable may be above the Normal Upper Value for up to 29 seconds before abnormal condition is detected. This means that the transmission could be as late as 29 seconds after the process variable exceeded the Normal Upper Value.

Once you have decided the proper time for the Abnormal Transmission Rate follow the Field Unit menu map shown in Figure 6.6.

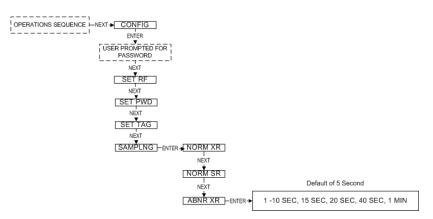
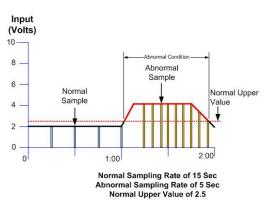


Figure 6.6: Menu Map to Abnormal Transmission Rate Setting

Using Wireless Instrumentation Manager


If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). An explanation of how to select the Abnormal Transmission Rate using the Wireless Instrumentation Manager software can be found in section 6.6.

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)

6.4: Selecting the Abnormal Sampling Rate*

NOTE

If you do not need more or less frequent samples and updates from a Field Unit for a given application, then there is no need to complete this section. Simply set the Normal Transmission and Sampling Rates to the desired speeds, and make sure that the Normal Upper and Lower Values are configured to **Disabled**.

Figure 6.7: Example of Abnormal Sampling Rate Setting

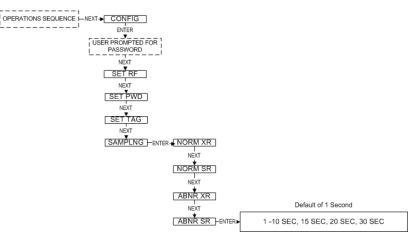
The **Abnormal Sampling Rate** is identical to the Normal Sampling Rate with one exception. The Abnormal Sampling Rate only applies while the Field Unit is in an Abnormal condition (see Setting Normal Upper and Lower Values section 6.5). This allows you to increase or decrease the frequency of information you receive depending on the operating conditions of the device being monitored.

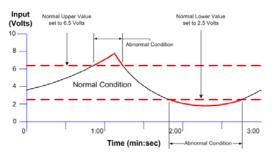
In order to properly set the Abnormal Sampling Rate, you must first determine how often the Field Unit needs to update its data while in an Abnormal condition. You have a selectable range of 1-10, 15, 20, 40 seconds and 1 minute. Figure 6.7 is an example of how the device switches sampling methods from Normal Sampling Rates to Abnormal Sampling Rates. Note how the first abnormal sample is taken a few seconds after the Normal Upper Value set point is exceeded. The next sample will then follow this sample by 5 seconds (or whatever the Abnormal Sampling Rate is set to). These samples will continue at this interval until the process value drops below the Normal Upper Value set point.

Once the process value drops below this set point the sampling rate will return to the Normal Sampling Rate. Also, the Abnormal Sampling must be equal to or faster than the Abnormal Transmission Rate.

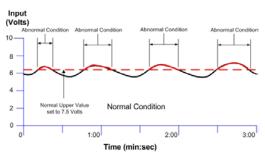
The user should also note that the transmission time depends on the sample rate, and when the process variable is sampled. If the Normal Sampling Rate is 30 seconds, then the process variable may be above the Normal Upper Value for up to 29 seconds before abnormal condition is detected. This means that the transmission could be as late as 29 seconds after the process variable exceeded the Normal Upper Value.

Once you have decided the proper time for the Abnormal Sampling Rate follow the Field Unit menu map shown in Figure 6.8.




Figure 6.8: Menu Map to Abnormal Sampling Rate Setting

Using Wireless Instrumentation Manager


If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). An explanation of how to select the Abnormal Sampling Rate using the Wireless Instrumentation Manager software can be found in section 6.6.

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)

6.5: Selecting the Normal Upper and Lower Values*

Figure 6.9: Normal Upper and Lower Value Example

Figure 6.11: Condition "Chatter" Without Time Deadband

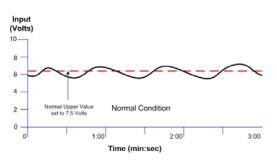


Figure 6.12: Condition "Chatter" Elimination Due to Time Deadband

Using Wireless Instrumentation Manager

Each Accutech Field Unit is equipped with an input level upper and lower value. As the input is measured, it is compared to a set threshold value. Depending upon the setting of that value, whether it is enabled or not, and what the time deadband is, the Field Unit will enter an Abnormal condition as seen in Figure 6.9.

The Normal Upper Value would be an indication that the analog input is 'high' and the Normal Lower Value would be an indication that analog input is 'low. Thus the normal operating condition for the input application would be found in between the two Normal Values. To configure the values, follow the Field Unit menu map shown in Figure 6.10.

Figure 6.10: Menu Map to Normal Upper and Lower Value Settings

When configuring the Normal Values you will first be prompted to enable the input. You should only disable an input if it will not be used.

Once an input has been enabled, the user may enter a Normal Upper Value, Normal Lower Value and the Smart Rate Threshold (see Section 6.5). If, for example, the Normal Upper Value is enabled, the next prompt you will receive is -XX.XX for the process variable value. Increment this value to the desired value and press the ENTER button. (The "-" may be toggled on and off as well).

The final prompt you will receive is the Time Deadband prompt. The Time Deadband refers to the number of seconds that the measured reading must stay in a certain condition before, the Field Unit will actually switch to that condition. To select a proper Time Deadband consider the example in Figure 6.11. Notice that the Field Unit continues to cycle from Normal to Abnormal Conditions due to the fact that the input value is fluctuating around the 7.5 Volt Normal Upper Value. This is undesired. The addition of a few second delay before the Field Unit switches conditions will eliminate this "chatter", as seen in Figure 6.12.

If you have the Wireless Instrumentation Manager software this menu option will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). An explanation of how to select the Abnormal Sampling Rate using the Wireless Instrumentation Manager software can be found in section 6.6.

* Indicates that Menu is Disabled if Wireless Instrumentation Manager is detected. (See Appendix A)

6.6: Selecting Rates, Thresholds, and Deadbands via the Software

Acoustic Monitor Properties	AM1 (1-01)	
General Range Sampling Rates] Sampling Bands	Alarms
Wireless Tramsmit Rates		
Normal Transmit Rate:	10 Sec 💌	
Abnormal Transmit Rate:	3 Sec 🗸 🗸	
C Sensor Sampling Rates		
Normal Sampling:	10 Sec 💌	
Abnormal Sampling:	1 Sec 🗸	
L		
Load from File Save to File		OK Cancel
Load nom File		

Figure 6.13: Sampling and Transmission Rate Selection Using the Software

Upper Limits			
🕑 Use I	JItrasound Limit	400.0	_
	Value:	100.0	Counts Seconds
	Time Deadband:	5.0	Seconds
	LCD Message:	BLOWING	
🗹 Use 1	l'emperature Limit Value:	85.0	۴C
		0.0	Seconds
	Time Deadband:	U.U HLTEMP	3660168
	LCD Message:	HITEMP	
Lower Limits	Jitrasound Limit		
	Value:	0.0	Counts
	Time Deadband:	0.0	Seconds
	LCD Message:	BAND2	
🛄 Use 1	l'emperature Limit		
	Value:	0.0	
	Time Deadband:	0.0	Seconds
	LCD Message:	BAND4	
The unit use values are v	es Normal sampling/	transmission rat hen the value is	ands" of the field unit. es when the primary s outside of the bands, it used.

Figure 6.14: Normal Upper and Lower Value Selection Using the Software

If you have the Wireless Instrumentation Manager software the Normal and Abnormal Sampling and Transmission menu options will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). These settings should be entered using the Wireless Instrumentation Manager software. To do so, enter the configuration menu (See Section 9.2 of the Wireless Instrumentation Manager User Manual). Once in the configuration menu click on the **Sampling Rates** tab to bring up the sampling rate information, as shown in Figure 6.13.

To select the Normal Transmission Rate, select one of the time periods from the drop box. Next, select an Abnormal Transmission Rate in the same manner. Note that the Normal and Abnormal Transmission Rate can be the same.

Once the transmission rates have been selected, the user should select the desired sampling rates. Note that the sampling rate must be equal to or faster than the associated transmit rate. For example, in Figure 6.13 the Normal Transmission Rate is set to 10 seconds and the Normal Sampling Rate is also set to 10 seconds. This is a valid configuration. Another example in Figure 6.13 is the Abnormal Transmission Rate being set to 3 seconds and the Abnormal Sampling Rate being set to 1 second.

If you incorrectly enter the Transmission and Sampling Rates, a message will be displayed explaining this. You will not be allowed to enter an incorrect setting.

If you have the Wireless Instrumentation Manager software the Normal and Normal Upper and Lower Value menu options will not be accessible via the Field Unit once the Field Unit detects that the software is being used (See Appendix A for more details). These settings should be entered using the Wireless Instrumentation Manager software. To do so, enter the configuration menu (See Section 9.2 of the Wireless Instrumentation Manager User Manual). Once in the configuration menu click on the **Sampling Bands** tab to bring up the sampling band information as shown in Figure 6.14.

To set a limit to the normal condition, enable the limit by clicking on the **Use Input X Limit** check box. Then enter the value and time deadband for the limit (for more details see Section 6.5 of this manual).

Maintaining the Field Unit

The Field Unit is extremely easy to maintain in that it requires no periodic calibration or system checks. The Field Unit has a self diagnostic which is constantly checking the internal system. If any errors are found they are reported via the LCD, Base Radio or the software. A simple yearly visual inspection for the following is all that is needed:

- Is the Field Unit still securely fastened to the equipment being monitored?
- Are there any visible corrosions, cracks or residue build-ups on the unit?
- Has anything about the application changed from the original intended use?

The battery will need to be changed within one month of seeing a 'LOW BAT' message on either the Field Unit or in WIM. This is a simple process:

1. Make sure you have the correct replacement battery:

Accutech model # WI-BAT TADIRAN™ Lithium Inorganic Battery (non-rechargeable) Size "C" – 3.6Volts #TL2200/S

- 2. Power down the Field Unit by pressing and holding both the NEXT and ENTER buttons for a few seconds and then entering the password.
- 3. Remove the 4 set screws on the sides of the Field Unit housing with a standard screwdriver.
- 4. Remove the housing and locate the battery. Warning! When removing the housing do not twist or bend the green flex cable! Doing so may cause the tether to improperly seat next to the antenna and greatly reduce operable RF distances. Do not allow the housing to flop around while hanging by the tether.
- 5. Remove the old battery and replace it with the new battery, positive end first. (Note that the positive end of the battery clip is the end with the red wire).
- 6. Replace the housing and screw the housing back on. Power up the unit by pressing and holding both the NEXT and ENTER buttons for a few seconds.
- 7. Properly dispose of the used battery.

7.1: Changing the Battery

A Warning A Explosions may result in death or serious injury. Do not remove the instrument cover or open wiring housing in explosive atmospheres when power and communications are on. Instead, remove the Field Unit from the hazardous location and then proceed to open the instrument cover and replace the battery.

Technical Specifications

Acoustic Transducer Characteristics

- Center Frequency: 40.0±3.0 kHz
- Bandwidth (-6 dB) 2.0kHz

Output Characteristics

• Amplitude is indicated by a display reading from 0 to 255.

RF Characteristics

- 902 MHz 928 MHz Frequency Hopping Spread Spectrum, FCC certified ISM license-free band
- Up to 3000' range from Base Radio with clear line of sight;
- The RF module in each field unit is individually tested and calibrated over the full temperature range to ensure reliable wireless operation

Operating Temperature Range

- -40 °F to +185 °F (-40 °C to +85 °C) electronics
- -4 °F to +158 °F (-20 °C to +70 °C) display (full visibility)
- -40 °F to +185 °F (-40 °C to +85 °C) display (with reduced visibility)

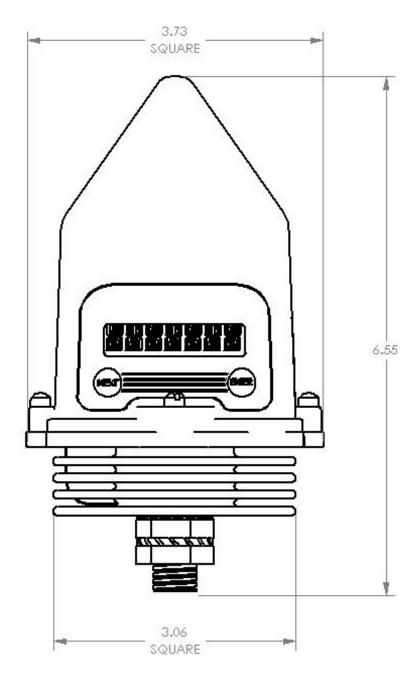
Physical Characteristics

- Brass and Cast Aluminum Base
- Optional Stainless Steel and Baked Enamel Base
- GE Lexan® Cover. V-0 Rating and UV Stable

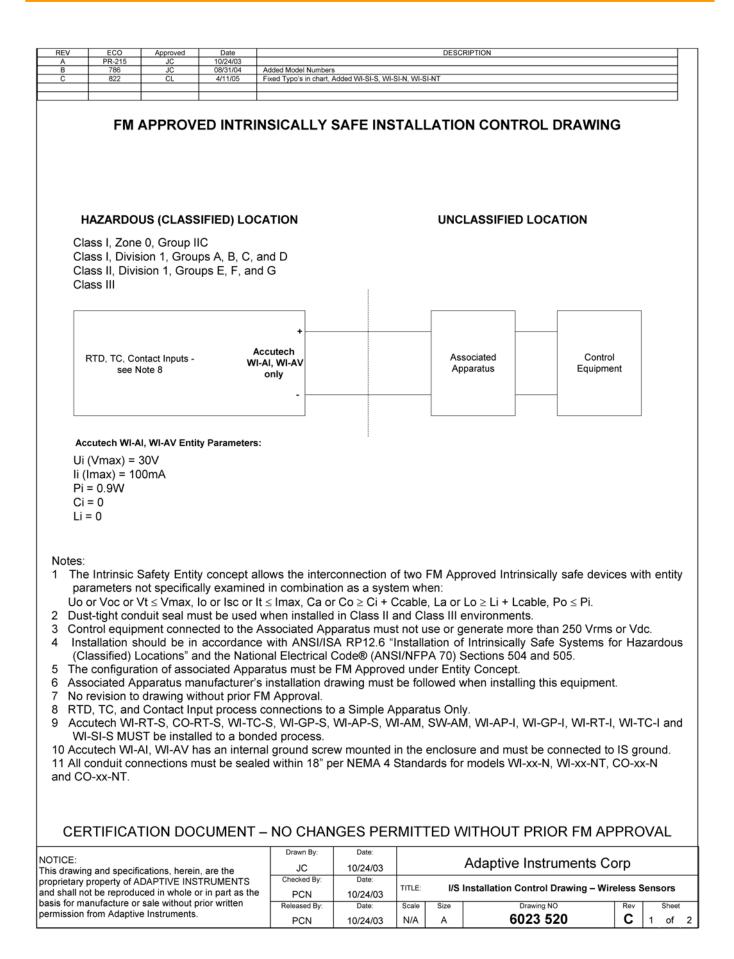
Operating Vibration and Shock Characteristics

• Certified per IEC EN00068 2-6 (vibration) and 2-27 (shock)

Random Vibration Characteristics


• Certified to withstand 6 g's, 15 minutes per Axis from 9 – 500 Hz

Electromagnetic Compatibility (CE Compliance)


• Operates within specification in fields from 80 to 1,000 MHz with Field strengths to 30 V/m. Meets EN 50082-1 general immunity standard and EN 55011 compatibility emissions standard

Industrial Certification

- Rated for industrial use -40 °F to 185 °F(-40 °C to 85 °C)
- FM NEMA 4 weather-proof housing
- FM rated intrinsically safe for Class I/II/III, Division 1, Groups A,B,C,D,E,F&G; Class I/II/III, Division 2, Groups A,B,C,D,F&G

Dimensioned Mechanical Drawing

MODEL	SENSOR CONNECTIONS						INPUT CONNECTIONS				
WI-AM, SW-AM (Acoustic Monitor)	Integral Sensor – no external connections						Integral Sensor – no external connections				
WI-GP-I, WI-AP-I (Pressure Sensor)	Integral Sensor – no external connections						Integral Sensor – no external connections				
WI-RT-I (RTD Temperature)		Integral S	ensor – no	external co	nnections		Integral	Sensor – no	external con	nections	
WI-TC-I (T/C Temperature)		Integral S	ensor – no	external co	nnections		Integral	Sensor – no	external con	nections	
		J1 (Ter	minal Boa	ard) Sense	or Input		J3 (Ter	minal Boar	rd) Input Sv	vitches	
	1 (CH1+)	2 (CH1-)	3 (EXC+)	4 (EXC-)	5 (CH2+)	6 (CH2-)	1 (ISW1+)	2 (ISW1-)	3 (ISW2+)	4 (ISW2-	
WI-RT-S, CO-RT-S WI-RT-E, CO-RT-E (RTD Temperature)	RTD+	RTD-	EXC+	EXC-	(on 2)	(0)12 /	Input SW1+	Input Sw1-	(10112)	(10112	
WI-GP-S, WI-AP-S WI-GP-E, WI-AP-E	Pressure Out+	Pressure Out-	EXC+	EXC-	Bridge V+	Bridge V-	Input SW1+	Input Sw1-			
(Pressure Sensor) WI-TC-S, WI-TC-E (T/C Temperature)	T/C 1+	T/C 1-			T/C 2+	T/C 2-	Input SW1+	Input Sw1-	Input SW2+	Input SW2-	
WI-AI, WI-AI-E (Dual 4/20mA)	4/20mA CH1+	4/20mA CH1-			4/20mA CH2+	4/20mA CH2-	Input SW1+	Input Sw1-	Input SW2+	Input SW2-	
WI-AV, WI-AV-E (Dual 0-10V)	0-10V CH1+	0-10V CH1-			0-10V CH2+	0-10V CH2-	Input SW1+	Input Sw1-	Input SW2+	Input SW2-	
WI-SI-S (Dual Switch Input)							Input SW1+	Input Sw1-	Input SW2+	Input SW2-	
	Twiste	d Pair 1	Twistee	d Pair 3			Twisted Pair 2				
WI-RT-N, WI-RT-NT WI-RT-NT-yy-z (RTD Temperature)	RED SIG1+	BLK SIG1-	RED EXC+	BLK EXC-			RED ISW1+	BLK ISW1-			
(Twiste	d Pair 1	Twiste	d Pair 3	Twister	d Pair 4	Twiste	d Pair 2			
WI-GP-N, WI-AP-N WI-GP-NT, WI-AP-NT WI-GP-NT-yy-z WI-AP-NT-yy-z (Pressure Sensor)	RED PRES OUT+	BLK PRES OUT-	RED EXC+	BLK EXC-	RED SENSE +	BLK SENSE -	RED ISW1+	BLK ISW1-			
	Twiste	d Pair 1			Twisted	d Pair 4	Twiste	d Pair 2	Twiste	d Pair 3	
WI-TC-N, WI-TC-NT WI-TC-NT-yy-z (T/C Temperature)	BLK SIG1+	RED SIG1-			BLK SIG2+	RED SIG2-	RED ISW1+	BLK ISW1-	RED ISW2+	BLK ISW2-	
	Twiste	d Pair 1			Twister	d Pair 4	Twiste	d Pair 2	Twiste	d Pair 3	
WI-AI-N WI-AV-N WI-AI-NT WI-AV-NT WI-AI-NT-yy-z, WI-AV-NT-yy-z (Dual 4/20mA)/(Dual 0-10V)	RED SIG1+	BLK SIG1-			RED SIG2+	BLK SIG2-	RED ISW1+	BLK ISW1-	RED ISW2+	BLK ISW2-	
	Twiste	d Pair 1									
CO-RT-N, CO-RT-NT CO-RT-NT-yy-z (Resistance Tape)	BLK SIG1+	RED SIG1-									
	Twiste	d Pair 1	Twiste	d Pair 3	Twisted	d Pair 2					
WI-GP-S-xxHAL WI-AP-S-xxHAL (Pressure Sensor)	RED PRES OUT+	BLK PRES OUT-	RED EXC+	BLK EXC-	RED SENSE+	BLK SENSE-					
							Twiste	d Pair 1	Twiste	d Pair 2	
WI-SI-N, WI-SI-NT							RED ISW1+	BLK ISW1-	RED ISW2+	BLK ISW2-	

NOTICE: This drawing and specifications, herein, are the proprietary property of ADAPTIVE INSTRUMENTS and shall not be reproduced in whole or in part as the basis for manufacture or sale without prior written permission from Adaptive Instruments.	N/A	N/A			Adaptive Instruments C	corp.			
	N/A	N/A	TITLE:	I/S	Installation Control Drawing – W	ireless	Senso	ors	
			Scale	Size	Drawing NO	Rev		Sheet	
	N/A	N/A	N/A	А	6023 520	C	2	of	2

Navigating User Menus

Pressing either the NEXT or ENTER buttons located on the front of the Field Unit or Base Radio just below the Liquid Crystal Display (LCD) screen is all that is needed to navigate the respective menus. Pressing both of these buttons for one second will turn the unit on.

Pressing the NEXT button at any time while the Field Unit is cycling through the normal messages causes the Field Unit to enter the setup mode. The NEXT button is then used to step through menu options, and the ENTER button is used to enter a sub menu of what is displayed on the LCD at that time. If no button is pressed within a 30 second period the unit goes back to the normal display mode.

If you enter a sub menu that requires a numerical input, such as 001, the left most 0 will be blinking. This indicates that pressing the NEXT button will increment this value with each press from 0 to 9 and back to 0 again. Pressing the ENTER button will move to the next available value. If the last value is blinking, pressing ENTER will save the entered values and return from the sub menu.

If both the NEXT and ENTER buttons are depressed at once, a message on the LCD displaying OFF? will appear. If both buttons are released upon appearance of this message the user will be returned to the scrolling main screen. If both buttons are not released for the duration of the OFF? message the unit will power down and turn off. Note: If the unit is turned off while entering values in a sub menu, those values will NOT be saved.

* As shown throughout the document, this mark indicates that these menu options will automatically turn off if the Wireless Instrumentation Manager Software is used. All changes to these Field Unit menu options should be made through software instead. This is to prevent simultaneous changes from taking place. If you wish to discontinue use of the software and want these menus re-instated, you must contact your Accutech Sales Representative.

Field Unit Displayed Message Definitions

This section covers the various messages, displayed on the Field Unit LCD, that occur during operation of the device.

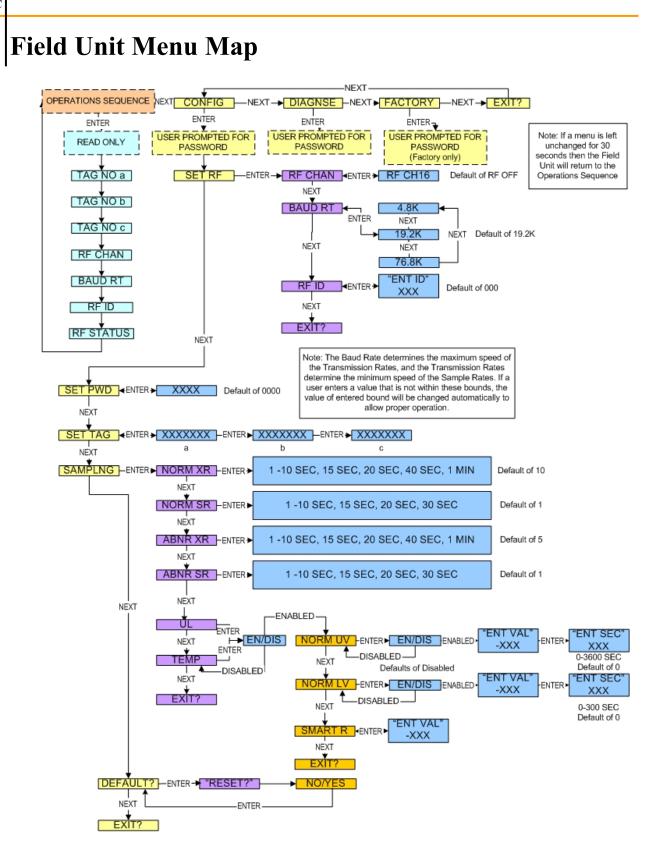
Operations Sequence

RF Link Status

- \Rightarrow RF OK Field Unit and Base Radio are communicating properly
- \Rightarrow RF SYNC Field Unit and Base Radio are attempting to synchronize communications.
- \Rightarrow RF OFF Field Unit's RF Channel is set to RF OFF
- \Rightarrow NO RF Field Unit and Base Radio have no communications
- Input Level
 - ⇒ XXX.XX Currently measured Ultrasound Input level
 - \Rightarrow XX.XX°C Currently measured Temperature Input level

Error Messages

If an error is detected with the operation of the Field Unit a message will be displayed on the Field Unit LCD (a corresponding message may also appear on the Base Radio LCD).


There are few types of error messages, warning and fatal. Warning messages are displayed as part of the normal cycling message sequence. These are:

- LOW BAT battery should be replaced as soon as possible
- NO RF can not detect Base Radio
- S FAULT there is an open sensor or excitation wire detected. Also if a sensor value goes above/below logical limits. The unit will display 9999.99 for measurement (sensor fault mode); but will continue sampling and recover if the problem desists.
- **OVERRNG** the device is measuring a value above/below sensor dependent bound values. For example the Analog Input device will report over-range if measurement is above 100% range of the Analog Input sensor. If the measurement goes above 150% full range, the unit will go into Sensor Fault mode. In over-range mode, the measurement is continued to be displayed, with the "OVERRNG" message to remind the user that the specified range of the sensor and the calibrated range of the device is being exceeded.

Fatal error messages will replace the normal cycling message sequence and will flash. A fatal message indicates the Field Unit is no longer operating normally and requires repair. These are:

- RF ERR fatal error within RF communications
- SEN ERR fatal error within the sensor electronics
 - SYS ERR fatal error within the microprocessor system
- RF CAL fatal error within the RF calibration system

•

ABOUT US

Accutech, a division of Adaptive Instruments Corp., is a leading edge, technology-driven developer, manufacturer and supplier of embedded microprocessor-based electronics. Based in Hudson, Massachusetts, Accutech is the most successful leading independent producer of wireless instrumentation on the market today.

Accutech customers include large national companies in the oil and gas, chemicals, pharmaceutical, food and beverage, primary materials processing, and energy industries. In addition to the wireless product line, Accutech also offers a traditional wired line of temperature, pressure and differential pressure instrumentation.

In the process control field, where quality is taken for granted and new technology is announced daily, we have deliberately concentrated our efforts on the development of instrumentation that makes business sense. The result is a product range that is rugged, secure, and reliable and works in even the most hazardous environments. We give companies the tools to reduce costs, save time, enhance safety, improve environmental performance and cut waste.

The next industrial revolution is right now. Let Accutech show you how to realize gains in operating efficiency.

Visit us at: www.accutechinstruments.com

Or call us at +1 800 879-6576

Specifications subject to change without notice. Printed in USA. Copyright 2005 Adaptive Instruments, Corp.

A Division of Adaptive Instruments Corp. 577 Main Street · Hudson, MA 01749 U.S.A. TEL: 800-879-6576 · 978-568-0500 FAX: 978-568-9085 Email: support@accutechinstruments.com www.accutechinstruments.com

