

AB Allen-Bradley

Power

Adjustable Frequency AC Drive Series B

Firmware Versions 4.001

User Manual

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or www.rockwellautomation.com/literature) describes some important differences between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.
In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.
The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.
No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc. is prohibited.
Throughout this manual, when necessary we use notes to make you aware of safety considerations.

\triangle
WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.

Important: Identifies information that is critical for successful application and understanding of the product.

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you:

- identify a hazard
- avoid the hazard
- recognize the consequences

Shock Hazard labels may be located on or inside the equipment (e.g., drive or motor) to alert people that dangerous voltage may be present.

Burn Hazard labels may be located on or inside the equipment (e.g., drive or motor) to alert people that surfaces may be at dangerous temperatures.

[^0]| Preface | Overview | Who Should Use this Manual? P-1
 What Is Not in this Manual P-1
 Reference Materials P-2
 Manual Conventions P-3
 Drive Frame Sizes P-3
 General Precautions P-4 |
| :---: | :---: | :---: |
| Chapter 1 | Installation/Wiring | Opening the Cover . $1-1$
 Mounting Considerations $1-2$
 AC Supply Source Considerations $1-4$
 General Grounding Requirements $1-5$
 Fuses and Circuit Breakers $1-5$
 Power Wiring $1-12$
 Using Input/Output Contactors
 Disconnecting MOV and CM Capars $1-13$
 I/O Wiring . $1-15$
 Reference Control $1-21$
 Auto/Manual Examples. $1-23$
 Lifting/Torque Proving $1-23$
 Common Bus/Precharge Notes $1-24$ |
| Chapter 2 | Start Up | Prepare For Drive Start-Up $2-1$
 Status Indicators $2-3$
 Start-Up Routines
 Running S.M.A.R.T. Start. $2-4$
 Running an Assisted Start Up $2-4$ |
| Chapter 3 | Programming and Parameters | |
| Chapter 4 | Troubleshooting | |

Appendix A Supplemental Specifications A-1
Drive Information Communication Configurations A-5
Output Devices A-8
Drive, Fuse \& Circuit Breaker Ratings A-8
Dimensions A-17
Frame Cross Reference A-27
Appendix B HIM Overview External and Internal Connections B-1
LCD Display Elements B-2
ALT Functions B-2
Menu Structure B-3
Viewing and Editing Parameters B-5
Linking Parameters B-6
Removing/Installing the HIM B-8
Appendix C Application Notes Adjustable Voltage Operation C-1
External Brake Resistor C-3
Lifting/Torque Proving C-4
Limit Switches for Digital Inputs C-11
Minimum Speed C-12
Motor Control Technology C-12
Motor Overload C-14
Overspeed C-16
Position Indexer/Speed Profiler C-17
Power Loss Ride Through C-27
Process PID C-28
Reverse Speed Limit C-32
Skip Frequency C-33
Sleep Wake Mode C-35
Start At PowerUp C-37
Stop Mode C-38
Voltage Tolerance C-42

Overview

The purpose of this manual is to provide you with the basic information needed to install, start-up and troubleshoot the PowerFlex 700 Adjustable Frequency AC Drive.

For information on \ldots	See page \ldots
Who Should Use this Manual?	$\mathrm{P}-1$
What Is Not in this Manual	$\underline{P-1}$
Reference Materials	$\underline{P-2}$
Manual Conventions	$\mathrm{P}-2$
Drive Frame Sizes	$\mathrm{P}-3$
General Precautions	$\mathrm{P}-3$
Catalog Number Explanation	$\mathrm{P}-4$

Who Should Use this Manual?

This manual is intended for qualified personnel. You must be able to program and operate Adjustable Frequency AC Drive devices. In addition, you must have an understanding of the parameter settings and functions.

What Is Not in this Manual

The PowerFlex 700 User Manual is designed to provide only basic start-up information. For detailed drive information, please refer to the PowerFlex Reference Manual. The reference manual is included on the CD supplied with your drive or is also available online at http://www.rockwellautomation.com/literature.

Reference Materials

The following manuals are recommended for general drive information:

Title	Publication	Available Online at ...
Wiring and Grounding Guidelines for PWM AC Drives	DRIVES-IN001...	www.rockwellautomation.com/ literature
Preventive Maintenance of Industrial Control and Drive System Equipment	DRIVES-TD001...	
Safety Guidelines for the Application, Installation and Maintenance of Solid State Control	SGI-1.1	
A Global Reference Guide for Reading Schematic Diagrams	100-2.10	
Guarding Against Electrostatic Damage	8000-4.5.2	

For detailed PowerFlex 700 information:

Title	Publication	Available ...
PowerFlex Reference Manual	PFLEX-RM001...	on the CD supplied with the drive or at www.rockwellautomation.com/literature

For Allen-Bradley Drives Technical Support:

Title	Online at ...
Allen-Bradley Drives Technical Support	www.ab.com/support/abdrives

Manual Conventions

- In this manual we refer to the PowerFlex 700 Adjustable Frequency AC Drive as; drive, PowerFlex 700 or PowerFlex 700 Drive.
- To help differentiate parameter names and LCD display text from other text, the following conventions will be used:
- Parameter Names will appear in [brackets].

For example: [DC Bus Voltage].

- Display Text will appear in "quotes." For example: "Enabled."
- The following words are used throughout the manual to describe an action:

Word	Meaning
Can	Possible, able to do something
Cannot	Not possible, not able to do something
May	Permitted, allowed
Must	Unavoidable, you must do this
Shall	Required and necessary
Should	Recommended
Should Not	Not recommended

Drive Frame Sizes

Similar PowerFlex 700 drive sizes are grouped into frame sizes to simplify spare parts ordering, dimensioning, etc. A cross reference of drive catalog numbers and their respective frame size is provided in Appendix A.

General Precautions

ATTENTION: This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Static control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with static control procedures, reference A-B publication 8000-4.5.2, "Guarding Against Electrostatic Damage" or any other applicable ESD protection handbook.

ATTENTION: An incorrectly applied or installed drive can result in component damage or a reduction in product life. Wiring or application errors, such as, undersizing the motor, incorrect or inadequate AC supply, or excessive ambient temperatures may result in malfunction of the system.

ATTENTION: Only qualified personnel familiar with adjustable frequency AC drives and associated machinery should plan or implement the installation, start-up and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before performing any work on the drive. Measure the DC bus voltage at the +DC \& -DC terminals of the Power Terminal Block (refer to Chapter 1 for location). The voltage must be zero.

ATTENTION: Risk of injury or equipment damage exists. DPI or SCANport host products must not be directly connected together via 1202 cables. Unpredictable behavior can result if two or more devices are connected in this manner.

ATTENTION: An incorrectly applied or installed bypass system can result in component damage or reduction in product life. The most common causes are:

- Wiring AC line to drive output or control terminals.
- Improper bypass or output circuits not approved by Allen-Bradley.
- Output circuits which do not connect directly to the motor.

Contact Allen-Bradley for assistance with application or wiring.

ATTENTION: The "adjust freq" portion of the bus regulator function is extremely useful for preventing nuisance overvoltage faults resulting from aggressive decelerations, overhauling loads, and eccentric loads. It forces the output frequency to be greater than commanded frequency while the drive's bus voltage is increasing towards levels that would otherwise cause a fault. However, it can also cause either of the following two conditions to occur.

1. Fast positive changes in input voltage (more than a 10% increase within 6 minutes) can cause uncommanded positive speed changes. However an "OverSpeed Limit" fault will occur if the speed reaches [Max Speed] + [Overspeed Limit]. If this condition is unacceptable, action should be taken to 1) limit supply voltages within the specification of the drive and, 2) limit fast positive input voltage changes to less than 10%. Without taking such actions, if this operation is unacceptable, the "adjust freq" portion of the bus regulator function must be disabled (see parameters 161 and 162).
2. Actual deceleration times can be longer than commanded deceleration times. However, a "Decel Inhibit" fault is generated if the drive stops decelerating altogether. If this condition is unacceptable, the "adjust freq" portion of the bus regulator must be disabled (see parameters 161 and 162). In addition, installing a properly sized dynamic brake resistor will provide equal or better performance in most cases.
Important: These faults are not instantaneous. Test results have shown that they can take between 2-12 seconds to occur.

ATTENTION: Loss of control in suspended load applications can cause personal injury and/or equipment damage. Loads must always be controlled by the drive or a mechanical brake. Parameters 600-611 are designed for lifting/torque proving applications. It is the responsibility of the engineer and/or end user to configure drive parameters, test any lifting functionality and meet safety requirements in accordance with all applicable codes and standards.

Catalog Number Explanation

The PowerFlex 700 catalog numbering scheme is shown on page $\mathrm{P}-5$.

Notes:

Installation/Wiring

This chapter provides information on mounting and wiring the PowerFlex 700 Drive.

For information on . .	See page
Opening the Cover	$1-1$
Mounting Considerations	$1-2$
AC Supply Source Considerations	$1-2$
General Grounding Requirements	$1-4$
Fuses and Circuit Breakers	$1-5$
Power Wiring	$1-5$

For information on. .	See page
Disconnecting MOVs and	$1-13$
Common Mode Capacitors	
$/ O$ Wiring	$1-15$
Reference Control	$1-21$
Auto/Manual Examples	$1-22$
Litting/Torque Proving	$1-23$
EMC Instructions	$1-24$

Most start-up difficulties are the result of incorrect wiring. Every precaution must be taken to assure that the wiring is done as instructed. All items must be read and understood before the actual installation begins.

ATTENTION: The following information is merely a guide for proper installation. The Allen-Bradley Company cannot assume responsibility for the compliance or the noncompliance to any code, national, local or otherwise for the proper installation of this drive or associated equipment. A hazard of personal injury and/or equipment damage exists if codes are ignored during installation.

Opening the Cover

Frames 0-4

Locate the slot in the upper left corner. Slide the locking tab up and swing the cover open. Special hinges allow cover to move away from drive and lay on top of adjacent drive (if present). See page 1-7 for frame 4 access panel removal.
Frame 5
Slide the locking tab up, loosen the right-hand cover screw and remove. See page 1-7 for access panel removal.
Frame 6
Loosen 2 screws at bottom of drive cover. Carefully slide bottom cover down \& out. Loosen the 2 screws at top of cover and remove.

Mounting Considerations

Operating Temperatures

PowerFlex 700 drives are designed to operate at 0° to $40^{\circ} \mathrm{C}$ ambient.
To operate the drive in installations between 41° and $50^{\circ} \mathrm{C}$, see below.
Table 1.A Acceptable Surrounding Air Temperature \& Required Actions

Drive Catalog Number	Required Action...		
	IP 20, NEMA Type 1 ${ }^{(1)}$	IP 20, NEMA Type Open	IP 00, NEMA Type Open
	No Action Required	Remove Top Label (2)	Remove Top Label \& Vent Plate ${ }^{(3)}$
All Except 20BC072	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	NA
20 BC 072	$40^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$

${ }^{(1)}$ IP20 (NEMA Type 1) general purpose enclosures are intended for indoor use primarily to provide a degree of protection against contact with enclosed equipment. These enclosures offer no protection against airborne contaminants such as dust or water.
(2) Removing the adhesive top label from the drive changes the NEMA enclosure rating from Type 1 to Open type.
(3) To remove vent plate (see page A-22 for location), lift top edge of plate from the chassis. Rotate the plate out from the back plate.

Minimum Mounting Clearances

Specified vertical clearance requirements are intended to be from drive to drive. Other objects can occupy this space; however, reduced airflow may cause protection circuits to fault the drive. In addition, inlet air temperature must not exceed the product specification.

AC Supply Source Considerations

PowerFlex 700 drives are suitable for use on a circuit capable of delivering up to a maximum of $200,000 \mathrm{rms}$ symmetrical amperes, and a maximum of 600 volts.

ATTENTION: To guard against personal injury and/or equipment damage caused by improper fusing or circuit breaker selection, use only the recommended line fuses/circuit breakers specified in Appendix A.

If a system ground fault monitor (RCD) is to be used, only Type B (adjustable) devices should be used to avoid nuisance tripping.

Unbalanced or Ungrounded Distribution Systems

If phase to ground voltage will exceed 125% of normal line to line voltage or the supply system is ungrounded, refer to the Wiring and Grounding Guidelines for PWM AC Drives (publication DRIVES-IN001).

ATTENTION: PowerFlex 700 drives contain protective MOVs and common mode capacitors that are referenced to ground. These devices should be disconnected if the drive is installed on an ungrounded distribution system. See page 1-13 for jumper locations.

Input Power Conditioning

Certain events on the power system supplying a drive can cause component damage or shortened product life. These conditions are divided into 2 basic categories:

1. All drives

- The power system has power factor correction capacitors switched in and out of the system, either by the user or by the power company.
- The power source has intermittent voltage spikes in excess of 6000 volts. These spikes could be caused by other equipment on the line or by events such as lightning strikes.
- The power source has frequent interruptions.

2. 5 HP or Less Drives (in addition to " 1 " above)

- The nearest supply transformer is larger than 100 kVA or the available short circuit (fault) current is greater than 100,000A.
- The impedance in front of the drive is less than 0.5%.

If any or all of these conditions exist, it is recommended that the user install a minimum amount of impedance between the drive and the source. This impedance could come from the supply transformer itself, the cable between the transformer and drive or an additional transformer or reactor. The impedance can be calculated using the information supplied in Wiring and Grounding Guidelines for PWM AC Drives, publication DRIVES-IN001.

General Grounding Requirements

The drive Safety Ground - PE must be connected to system ground.
Ground impedance must conform to the requirements of national and local industrial safety regulations and/or electrical codes. The integrity of all ground connections should be periodically checked.
For installations within a cabinet, a single safety ground point or ground bus bar connected directly to building steel should be used. All circuits including the AC input ground conductor should be grounded independently and directly to this point/bar.

Figure 1.1 Typical Grounding

Safety Ground - PE

This is the safety ground for the drive that is required by code. This point must be connected to adjacent building steel (girder, joist), a floor ground rod or bus bar (see above). Grounding points must comply with national and local industrial safety regulations and/or electrical codes.

Shield Termination - SHLD

The Shield terminal (see Figure 1.3 on page 1-10) provides a grounding point for the motor cable shield. The motor cable shield should be connected to this terminal on the drive (drive end) and the motor frame (motor end). A shield terminating cable gland may also be used.
When shielded cable is used for control and signal wiring, the shield should be grounded at the source end only, not at the drive end.

RFI Filter Grounding

Using an optional RFI filter may result in relatively high ground leakage currents. Therefore, the filter must only be used in installations with grounded AC supply systems and be permanently installed and solidly grounded (bonded) to the building power distribution ground. Ensure that the incoming supply neutral is solidly connected (bonded) to the same building power distribution ground. Grounding must not rely on flexible cables and should not include any form of plug or socket that would permit inadvertent disconnection. Some local codes may require redundant ground connections. The integrity of all connections should be periodically checked. Refer to the instructions supplied with the filter.

Fuses and Circuit Breakers

The PowerFlex 700 can be installed with either input fuses or an input circuit breaker. National and local industrial safety regulations and/or electrical codes may determine additional requirements for these installations. Refer to Appendix A for recommended fuses/circuit breakers.

ATTENTION: The PowerFlex 700 does not provide branch short circuit protection. Specifications for the recommended fuse or circuit breaker to provide protection against short circuits are provided in Appendix A.

Power Wiring

ATTENTION: National Codes and standards (NEC, VDE, BSI etc.) and local codes outline provisions for safely installing electrical equipment. Installation must comply with specifications regarding wire types, conductor sizes, branch circuit protection and disconnect devices. Failure to do so may result in personal injury and/or equipment damage.

Cable Types Acceptable for 200-600 Volt Installations

A variety of cable types are acceptable for drive installations. For many installations, unshielded cable is adequate, provided it can be separated from sensitive circuits. As an approximate guide, allow a spacing of 0.3 meters (1 foot) for every 10 meters (32.8 feet) of length. In all cases, long parallel runs must be avoided. Do not use cable with an insulation thickness less than or equal to $15 \mathrm{mils}(0.4 \mathrm{~mm} / 0.015 \mathrm{in}$.). Use Copper wire only. Wire gauge requirements and recommendations are based on 75 degrees C. Do not reduce wire gauge when using higher temperature wire.

Unshielded

THHN, THWN or similar wire is acceptable for drive installation in dry environments provided adequate free air space and/or conduit fill rates limits are provided. Do not use THHN or similarly coated wire in wet areas. Any wire chosen must have a minimum insulation thickness of 15 Mils and should not have large variations in insulation concentricity.

Shielded/Armored Cable

Shielded cable contains all of the general benefits of multi-conductor cable with the added benefit of a copper braided shield that can contain much of the noise generated by a typical AC Drive. Strong consideration for shielded cable should be given in installations with sensitive equipment such as weigh scales, capacitive proximity switches and other devices that may be affected by electrical noise in the distribution system. Applications with large numbers of drives in a similar location, imposed EMC regulations or a high degree of communications/ networking are also good candidates for shielded cable.

Shielded cable may also help reduce shaft voltage and induced bearing currents for some applications. In addition, the increased impedance of shielded cable may help extend the distance that the motor can be located from the drive without the addition of motor protective devices such as terminator networks. Refer to Reflected Wave in "Wiring and Grounding Guidelines for PWM AC Drives," publication DRIVES-IN001A-EN-P.

Consideration should be given to all of the general specifications dictated by the environment of the installation, including temperature, flexibility, moisture characteristics and chemical resistance. In addition, a braided shield should be included and be specified by the cable manufacturer as having coverage of at least 75%. An additional foil shield can greatly improve noise containment.

A good example of recommended cable is Belden® 295xx (xx determines gauge). This cable has four (4) XLPE insulated conductors with a 100% coverage foil and an 85% coverage copper braided shield (with drain wire) surrounded by a PVC jacket.

Other types of shielded cable are available, but the selection of these types may limit the allowable cable length. Particularly, some of the newer cables twist 4 conductors of THHN wire and wrap them tightly with a foil shield. This construction can greatly increase the cable charging current required and reduce the overall drive performance. Unless specified in the individual distance tables as tested with the drive, these cables are not recommended and their performance against the lead length limits supplied is not known.
See Table 1.B.
Table 1.B Recommended Shielded Wire

Location	Rating/Type	Description
Standard	$600 \mathrm{~V}, 90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$	\bullet Four tinned copper conductors with XLPE insulation.
(Option 1)	XHHW2/RHW-2	-Copper braid/aluminum foil combination shield and Anixter B209500-B209507, Belden 29501-29507, or Bequivalent copper drain wire.
	- PVC jacket.	

Location	Rating/Type	Description
Standard (Option 2)	Tray rated $600 \mathrm{~V}, 90^{\circ} \mathrm{C}$ (194° F) RHH/RHW-2 Anixter OLF-7xxxxx or equivalent	- Three tinned copper conductors with XLPE insulation. - 5 mil single helical copper tape (25% overlap min.) with three bare copper grounds in contact with shield. - PVC jacket.
Class I \& II; Division I \& II	Tray rated $600 \mathrm{~V}, 90^{\circ} \mathrm{C}$ ($194^{\circ} \mathrm{F}$) RHH/RHW-2 Anixter 7V-7xxxx-3G or equivalent	- Three bare copper conductors with XLPE insulation and impervious corrugated continuously welded aluminum armor. - Black sunlight resistant PVC jacket overall. - Three copper grounds on \#10 AWG and smaller.

EMC Compliance

Refer to EMC Instructions on page 1-24 for details.

Cable Trays and Conduit

If cable trays or large conduits are to be used, refer to the guidelines presented in the Wiring and Grounding Guidelines for PWM AC Drives, publication DRIVES-IN001.

ATTENTION: To avoid a possible shock hazard caused by induced voltages, unused wires in the conduit must be grounded at both ends. For the same reason, if a drive sharing a conduit is being serviced or installed, all drives using this conduit should be disabled. This will help minimize the possible shock hazard from "cross coupled" motor leads.

Motor Cable Lengths

Typically, motor lead lengths less than 91 meters (300 feet) are acceptable. However, if your application dictates longer lengths, refer to the Wiring and Grounding Guidelines for PWM AC Drives, publication DRIVES-IN001.

Cable Entry Plate Removal

If additional wiring access is needed, the Cable Entry Plate on 0-3 Frame drives can be removed. Simply loosen the screws securing the plate to the chassis. The slotted mounting holes assure easy removal.

Important: Removing the Cable Entry Plate limits the maximum ambient temperature to 40 degrees C (104 degrees F).

Power Wiring Access Panel Removal

Frame	Removal Procedure (Replace when wiring is complete)
$0,1,2 \& 6$	Part of front cover, see page 1-1.
3	Open front cover and gently tap/slide cover down and out.
4	Loosen the 4 screws and remove.
5	Remove front cover (see page 1-1), gently tap/slide panel up and out.

AC Input Phase Selection (Frames 5 \& 6 Only)

ATTENTION: To avoid a shock hazard, ensure that all power to the drive has been removed before performing the following.

Moving the "Line Type" jumper shown in Figure 1.2 will allow single or three-phase operation.
Important: When selecting single-phase operation, input power must be applied to the R (L1) and S (L2) terminals only.

Selecting/Verifying Fan Voltage (Frames 5 \& 6 Only)

Important: Read Attention statement above!
Frames $5 \& 6$ utilize a transformer to match the input line voltage to the internal fan voltage. If your line voltage is different than the voltage class specified on the drive nameplate, it may be necessary to change transformer taps as shown below. Common Bus (DC input) drives require user supplied 120 or 240 V AC to power the cooling fans. The power source is connected between " 0 VAC" and the terminal corresponding to your source voltage (see Figure 1.4).
Table A Fan VA ratings (DC Input Only)

Frame	Rating (120V or 240V)
5	100 VA
6	138 VA

Figure 1.2 Typical Locations - Phase Select Jumper \& Transformer (Frame 5 shown)

Frame 6 Transformer Tap Access
The transformer is located behind the Power Terminal Block in the area shown in Figure 1.2. Access is gained by releasing the terminal block from the rail. To release terminal block and change tap:

1. Locate the small metal tab at the bottom of the end block.
2. Press the tab in and pull the top of the block out. Repeat for next block if desired.
3. Select appropriate transformer tap.
4. Replace block(s) in reverse order.

Power Terminal Block

Refer to Figure 1.3 for typical locations.
Table 1.C Power Terminal Block Specifications

No.	Name	Frame	Description	Wire Size Range ${ }^{(1)}$		Torque	
				Maximum	Minimum	Maximum	Recommended
(1)	Power Terminal Block	0 \& 1	Input power and motor connections	$\begin{aligned} & 4.0 \mathrm{~mm}^{2} \\ & (10 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$1.7 \mathrm{~N}-\mathrm{m}$ $(15 \mathrm{lb} .-\mathrm{in}$.	$\begin{aligned} & 0.8 \mathrm{~N}-\mathrm{m} \\ & (7 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
		2	Input power and motor connections	$10.0 \mathrm{~mm}^{2}$ (6 AWG)	$\begin{aligned} & 0.8 \mathrm{~mm}^{2} \\ & (18 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 1.7 \mathrm{~N}-\mathrm{m} \\ & (15 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 1.4 \mathrm{~N}-\mathrm{m} \\ & (12 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
		3	Input power and motor connections	$\begin{aligned} & 25.0 \mathrm{~mm}^{2} \\ & (3 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 3.6 N-m } \\ \text { (32 lb.-in.) } \end{array}$	$\begin{aligned} & 1.8 \mathrm{~N}-\mathrm{m} \\ & (16 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
			BR1, 2 terminals	$10.0 \mathrm{~mm}^{2}$ (6 AWG)	$\begin{aligned} & 0.8 \mathrm{~mm}^{2} \\ & (18 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 1.7 \mathrm{~N}-\mathrm{m} \\ & (15 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 1.4 \mathrm{~N}-\mathrm{m} \\ & (12 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
		4	Input power and motor connections	$\begin{aligned} & 35.0 \mathrm{~mm}^{2} \\ & (1 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 10 \mathrm{~mm}^{2} \\ & (8 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~N}-\mathrm{m} \\ & (35 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{aligned} & 4.0 \mathrm{~N}-\mathrm{m} \\ & (35 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
		$\begin{array}{\|l\|} \hline 5 \\ (75 \mathrm{HP}) \\ \hline \end{array}$	Input power, BR1, 2, DC+, DC- and motor connections	$\begin{aligned} & 50.0 \mathrm{~mm}^{2} \\ & (1 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$	See Note ${ }^{(2)}$	
			PE	$\begin{aligned} & 50.0 \mathrm{~mm}^{2} \\ & (1 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 16.0 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$		
		$\begin{array}{\|l\|} \hline 5 \\ (100 \mathrm{HP}) \end{array}$	Input power, DC+, DC- and motor	$\begin{array}{\|l\|} \hline 70.0 \mathrm{~mm}^{2} \\ (2 / 0 \mathrm{AWG}) \end{array}$	$\begin{aligned} & 25.0 \mathrm{~mm}^{2} \\ & (4 \mathrm{AWG}) \end{aligned}$		
			BR1, 2, terminals	$50.0 \mathrm{~mm}^{2}$ (1/0 AWG)	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$		
			PE	$\begin{array}{\|l\|} \hline 50.0 \mathrm{~mm}^{2} \\ (1 / 0 \mathrm{AWG}) \end{array}$	$\begin{aligned} & 16.0 \mathrm{~mm}^{2} \\ & (6 \mathrm{AWG}) \end{aligned}$		
		6	Input power, DC+, DC-, BR1, 2, PE, motor connections	$\begin{aligned} & 120.0 \mathrm{~mm}^{2} \\ & (4 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 6 \mathrm{~N}-\mathrm{m} \\ & \text { (52 lb.-in.) } \end{aligned}$	$\begin{aligned} & 6 \mathrm{~N}-\mathrm{m} \\ & (52 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
(2)	SHLD Terminal	0-6	Terminating point for wiring shields	-	-	$\begin{aligned} & 1.6 \mathrm{~N}-\mathrm{m} \\ & (14 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	$\begin{array}{\|l\|} \hline 1.6 \mathrm{~N}-\mathrm{m} \\ (14 \mathrm{lb} .-\mathrm{in} .) \end{array}$
(3)	AUX Terminal Block	0-4	Auxiliary Control Voltage PS+, PS-(3)	$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \\ & (16 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~mm}^{2} \\ & (24 \mathrm{AWG}) \end{aligned}$	-	-
		5-6		$\begin{aligned} & 4.0 \mathrm{~mm}^{2} \\ & (12 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\left\|\begin{array}{l} \text { 0.6 N-m } \\ (5.3 \mathrm{lb} .-\mathrm{in} .) \end{array}\right\|$	$\begin{aligned} & \text { 0.6 N-m } \\ & \text { (5.3 lb.-in.) } \end{aligned}$
4	Fan Terminal Block (CB Only)	5-6	User Supplied Fan Voltage (page 1-8)	$\begin{aligned} & 4.0 \mathrm{~mm}^{2} \\ & (12 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.6 \mathrm{~N}-\mathrm{m} \\ (5.3 \mathrm{lb} .-\mathrm{in} .) \end{array}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5.3 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$

(1) Maximum/minimum sizes that the terminal block will accept - these are not recommendations.
(2) Refer to the terminal block label inside the drive.
(3) External control power: UL Installation-300V DC, $\pm 10 \%$, Non UL Installation-270-600V DC, $\pm 10 \%$ $0-3$ Frame - $40 \mathrm{~W}, 165 \mathrm{~mA}, 5$ Frame - $80 \mathrm{~W}, 90 \mathrm{~mA}$.

Figure 1.3 Typical Power Terminal Block Location

Frame 6

Figure 1.4 Power Terminal Block

Terminal	Description	Notes
BR1	DC Brake (+)	DB Resistor Connection - Important: Only one DB resistor can be used with Frames 0-3. Connecting an internal \& external resistor could cause damage.
BR2	DC Brake (-)	
DC+	DC Bus (+)	
DC-	DC Bus (-)	
PE	PE Ground	Refer to Figure 1.3 for location on 3 Frame drives
$\stackrel{\perp}{\bar{I}}$	Motor Ground	Refer to Figure 1.3 for location on 3 Frame drives
U	U (T1)	To motor
V	V (T2)	To motor
W	W (T3)	To motor
R	R (L1)	AC Line Input Power
S	S (L2)	Three-Phase $=$ R, S \& T Single-Phase $=$ R \& S Only
T	T (L3)	Auxiliary Control Voltage (see Table 1.C)
PS+	AUX (+)	Auxiliary Control Voltage (see Table 1.C)
PS-	AUX (-)	

Using Input/Output Contactors

Input Contactor Precautions

ATTENTION: A contactor or other device that routinely disconnects and reapplies the AC line to the drive to start and stop the motor can cause drive hardware damage. The drive is designed to use control input signals that will start and stop the motor. If an input device is used, operation must not exceed one cycle per minute or drive damage will occur.

ATTENTION: The drive start/stop/enable control circuitry includes solid state components. If hazards due to accidental contact with moving machinery or unintentional flow of liquid, gas or solids exist, an additional hardwired stop circuit may be required to remove the AC line to the drive. An auxiliary braking method may be required.

Output Contactor Precaution

ATTENTION: To guard against drive damage when using output contactors, the following information must be read and understood. One or more output contactors may be installed between the drive and motor(s) for the purpose of disconnecting or isolating certain motors/ loads. If a contactor is opened while the drive is operating, power will be removed from the respective motor, but the drive will continue to produce voltage at the output terminals. In addition, reconnecting a motor to an active drive (by closing the contactor) could produce excessive current that may cause the drive to fault. If any of these conditions are determined to be undesirable or unsafe, an auxiliary contact on the output contactor should be wired to a drive digital input that is programmed as "Enable." This will cause the drive to execute a coast-to-stop (cease output) whenever an output contactor is opened.

Bypass Contactor Precaution

ATTENTION: An incorrectly applied or installed bypass system can result in component damage or reduction in product life. The most common causes are:

- Wiring AC line to drive output or control terminals.
- Improper bypass or output circuits not approved by Allen-Bradley.
- Output circuits which do not connect directly to the motor.

Contact Allen-Bradley for assistance with application or wiring.

Disconnecting MOVs and Common Mode Capacitors

PowerFlex 700 drives contain protective MOVs and common mode capacitors that are referenced to ground. To guard against drive damage, these devices should be disconnected if the drive is installed on an ungrounded distribution system where the line-to-ground voltages on any phase could exceed 125% of the nominal line-to-line voltage. To disconnect these devices, remove the jumper(s) listed in Table 1.D. Jumpers can be removed by carefully pulling the jumper straight out. See Wiring and Grounding Guidelines for PWM AC Drives, publication DRIVES-IN001 for more information on ungrounded systems.

ATTENTION: To avoid an electric shock hazard, verify that the voltage on the bus capacitors has discharged before removing/installing jumpers. Measure the DC bus voltage at the $+\mathrm{DC} \&-\mathrm{DC}$ terminals of the Power Terminal Block. The voltage must be zero.

Table 1.D Jumper Removal ${ }^{(1)}$

Frames	Jumper	Component	Jumper Location	No.
0,1	PEA	Common Mode Capacitors	Remove the I/O Cassette (page 1-16). Jumpers located on the Power Board (Figure 1.5).	(1)
	PEB	MOV's		(2)
2-4	PEA	Common Mode Capacitors	Jumpers are located above the Power Terminal Block (see Figure 1.5).	3
	PEB	MOV's		4
5	Wire	Common Mode Capacitors	Remove the I/O Cassette as described on page 1-16. The green/yellow jumper is located on the back of chassis (see Figure 1.5 for location). Disconnect, insulate and secure the wire to guard against unintentional contact with chassis or components.	(5)
		MOV's	Note location of the two green/yellow jumper wires next to the Power Terminal Block (Figure 1.5). Disconnect, insulate and secure the wires to guard against unintentional contact with chassis or components.	6
		Input Filter Capacitors		
6	Wire	Common Mode Capacitors	Remove the wire guard from the Power Terminal Block. Disconnect the three green/yellow wires from the two "PE" terminals shown in Figure 1.4. Insulate/secure the wires to guard against unintentional contact with chassis or components.	
		MOV's		
		Input Filter Capacitors		

${ }^{(1)}$ Important: Do Not remove jumpers if the distribution system is grounded.

Figure 1.5 Typical Jumper Locations (see Table 1.D for description)

Frames 0 \& 1 (I/O Cassette Removed)

Frames 3 \& 4

I/O Wiring

Important points to remember about I/O wiring:

- Use Copper wire only. Wire gauge requirements and recommendations are based on 75 degrees C. Do not reduce wire gauge when using higher temperature wire.
- Wire with an insulation rating of 600 V or greater is recommended.
- Control and signal wires should be separated from power wires by at least 0.3 meters (1 foot).

Important: I/O terminals labeled "(-)" or "Common" are not referenced to earth ground and are designed to greatly reduce common mode interference. Grounding these terminals can cause signal noise.

ATTENTION: Configuring an analog input for $0-20 \mathrm{~mA}$ operation and driving it from a voltage source could cause component damage. Verify proper configuration prior to applying input signals.

ATTENTION: Hazard of personal injury or equipment damage exists when using bipolar input sources. Noise and drift in sensitive input circuits can cause unpredictable changes in motor speed and direction. Use speed command parameters to help reduce input source sensitivity.

Signal and Control Wire Types
Table 1.E Recommended Signal Wire

Signal Type/ Where Used	Belden Wire Type(s) (or equivalent)		Description	Min. Insulation Rating
Analog I/O \& PTC	8760/9460		$0.750 \mathrm{~mm}^{2}$ (18AWG), twisted pair, 100% shield with drain ${ }^{(5)}$	$\begin{aligned} & 300 \mathrm{~V}, \\ & 75-90^{\circ} \mathrm{C} \\ & \left(167-194^{\circ} \mathrm{F}\right) \end{aligned}$
Remote Pot	8770		$0.750 \mathrm{~mm}^{2}$ (18AWG), 3 cond., shielded	
$\begin{aligned} & \hline \text { Encoder/Pulse I/O } \\ & <30 \mathrm{~m} \text { (100 ft.) } \\ & \hline \end{aligned}$	Combined:	9730 ${ }^{(1)}$	$0.196 \mathrm{~mm}^{2}$ (24AWG), individually shielded	
Encoder/Pulse I/O	Signal:	9730/9728 ${ }^{(1)}$	$0.196 \mathrm{~mm}^{2}$ (24AWG), indiv. shielded	
30 to 152 m	Power:	8790 ${ }^{(2)}$	$0.750 \mathrm{~mm}^{2}$ (18AWG)	
(100 to 500	Combined:	9892 ${ }^{(3)}$	$0.330 \mathrm{~mm}^{2}$ or $0.500 \mathrm{~mm}^{2(3)}$	
Encoder/Pulse I/O	Signal:	9730/9728 ${ }^{(1)}$	$0.196 \mathrm{~mm}^{2}$ (24AWG), indiv. shielded	
152 to 259 m	Power:	8790 ${ }^{(2)}$	$0.750 \mathrm{~mm}^{2}$ (18AWG)	
(500 to 850 ft .)	Combined:	9773/9774 ${ }^{(4)}$	$0.750 \mathrm{~mm}^{2}(18 \mathrm{AWG})$, indiv. shielded pair	

(1) 9730 is 3 individually shielded pairs (2 channel + power). If 3 channel is required, use 9728.
(2) 8790 is 1 shielded pair.
(3) 9892 is 3 individually shielded pairs (3 channel), $0.33 \mathrm{~mm}^{2}$ (22 AWG) +1 shielded pair $0.5 \mathrm{~mm}^{2}$ (20 AWG) for power.
(4) 9773 is 3 individually shielded pairs (2 channel + power). If 3 channel is required, use 9774.
(5) If the wires are short and contained within a cabinet which has no sensitive circuits, the use of shielded wire may not be necessary, but is always recommended.

Table 1.F Recommended Control Wire for Digital I/O

Type	Wire Type(s)	Description	Minimum Insulation Rating
Unshielded	Per US NEC or applicable national or local code	-	300 V, 60 degrees C
Shielded	Multi-conductor shielded cable such as Belden 8770(or equiv.)	$0.750 \mathrm{~mm}^{2}$ (18AWG), 3 conductor, shielded.	(140 degrees F)

The I/O Control Cassette

Figure 1.6 shows the I/O Control Cassette and terminal block locations. The cassette provides a mounting point for the various PowerFlex 700 I/O options. To remove the cassette, follow the steps below. Cassette removal will be similar for all frames (0 Frame drive shown).

Step	Description
(A)	Disconnect the two cable connectors shown in Figure 1.6.
(B)	Loosen the two screw latches shown in Figure 1.6.
$\left(\begin{array}{c}\text { C }\end{array}\right.$	Slide the cassette out.
(D)	Remove screws securing cassette cover to gain access to the boards.

Figure 1.6 PowerFlex 700 Typical Cassette \& I/O Terminal Blocks

I/O Terminal Blocks

Table 1.G I/O Terminal Block Specifications

No.	Name	Description	Wire Size Range ${ }^{(1)}$		Torque	
			Maximum	Minimum	Maximum	Recommended
(1)	I/O Cassette	Removable I/O Cassette				
(2)	I/O Terminal Block	Signal \& control connections	$\begin{aligned} & 2.1 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.30 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{array}{\|l\|} \hline 0.6 \mathrm{~N}-\mathrm{m} \\ (5.2 \mathrm{lb} \text {.-in. }) \end{array}$	$\begin{array}{\|l\|} \hline 0.6 \mathrm{~N}-\mathrm{m} \\ (5.2 \mathrm{lb} .-\mathrm{in} .) \\ \hline \end{array}$
(3)	Encoder Terminal Block	Encoder power \& signal connections	$0.75 \mathrm{~mm}^{2}$ (18 AWG)	$\begin{aligned} & 0.196 \mathrm{~mm}^{2} \\ & (24 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5.2 \mathrm{lb} . \mathrm{in} .) \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~N}-\mathrm{m} \\ & (5.2 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$

${ }^{(1)}$ Maximum/minimum that the terminal block will accept - these are not recommendations.

Figure 1.7 I/O Terminal Designations

(1) Important: 4-20mA operation requires a jumper at terminals 17 \& 18 (or 19 \& 20). Drive damage may occur if jumper is not installed.
(2) These inputs/outputs are dependant on a number of parameters (see "Related Parameters").
(3) Differential Isolation - External source must be maintained at less than 160 V with respect to PE . Input provides high common mode immunity.
(4) Contacts in unpowered state. Any relay programmed as Fault or Alarm will energize (pick up) when power is applied to drive and deenergize (drop out) when a fault or alarm exists. Relays selected for other functions will energize only when that condition exists and will deenergize when condition is removed.
(5) 150 mA maximum Load. Not present on 115 V versions.

Encoder Terminal Block

Table 1.H Encoder Terminal Designations

See "Detail" in Figure 1.6	No.	Description (refer to page A-3 for encoder specifications)	
	8	+12V ${ }^{(1)}$ DC Power	Internal power source 250 mA .
	7	+12V ${ }^{(1)}$ DC Return (Common)	
	6	Encoder Z (NOT)	Pulse, marker or registration input. ${ }^{(2)}$
8 ,	5	Encoder Z	
\%	4	Encoder B (NOT)	Quadrature B input.
03	3	Encoder B	
0	2	Encoder A (NOT)	Single channel or quadrature A input.
(4)	1	Encoder A	

(1) Jumper selectable $+5 / 12 \mathrm{~V}$ is available on 20B-ENC-2 Encoder Boards only.
(2) Z channel can be used as a pulse input while A \& B are used for encoder.

Figure 1.8 Sample Encoder Wiring

1/0	Connection Example	I/0	Connection Example
Encoder Power - Internal Drive Power Internal (drive) 12V DC, 250 mA		Encoder Power - External Power Source	
Encoder Signal - Single-Ended, Dual Channel		Encoder Signal - Differential, Dual Channel	

Hardware Enable Circuitry

By default, the user can program a digital input as an Enable input. The status of this input is interpreted by drive software. If the application requires the drive to be disabled without software interpretation, a "dedicated" hardware enable configuration can be utilized. This is done by removing a jumper and wiring the enable input to "Digital In 6" (see below).

1. Remove the I/O Control Cassette \& cover as described on page 1-16.
2. Locate \& remove Jumper J10 on the Main Control Board (see diagram).
3. Re-assemble cassette.
4. Wire Enable to "Digital In 6" (see Figure 1.7).
5. Verify that [Digital In6 Sel], parameter 366 is set to " 1 , Enable."

I/O Wiring Examples

| Input/Output | Connection Example | Required Parameter Changes |
| :--- | :--- | :--- | :--- |
| Potentiometer | | |
| Unipolar Speed | | |
| Reference 1 (1) | | |

[^1]I/O Wiring Examples (continued)

Input/Output	Connection Example	Required Parameter Changes
Analog Output		
土10V, 4-20 mA Bipolar		
+10V Unipolar (shown)		

[^2]
Reference Control

"Auto" Speed Sources

The drive speed command can be obtained from a number of different sources. The source is determined by drive programming and the condition of the Speed Select digital inputs, Auto/Manual digital inputs or reference select bits of a command word.

The default source for a command reference (all speed select inputs open or not programmed) is the selection programmed in [Speed Ref A Sel]. If any of the speed select inputs are closed, the drive will use other parameters as the speed command source.

"Manual" Speed Sources

The manual source for speed command to the drive is either the HIM requesting manual control (see ALT Functions on page B-2) or the control terminal block (analog input) if a digital input is programmed to "Auto/Manual."

Changing Speed Sources

The selection of the active Speed Reference can be made through digital inputs, DPI command, jog button or Auto/Manual HIM operation.

Figure 1.9 Speed Reference Selection Chart ${ }^{(1)}$

Torque Reference Source

The torque reference is normally supplied by an analog input or network reference. Switching between available sources while the drive is running is not available. Digital inputs programmed as "Speed Sel 1,2,3" and the HIM Auto/Manual function (see above) do not affect the active torque reference when the drive is in Vector Control Mode.
(1) To access Preset Speed 1, set parameter 090 or 093 to "Preset Speed 1."

Auto/Manual Examples

PLC = Auto, HIM = Manual

A process is run by a PLC when in Auto mode and requires manual control from the HIM during set-up. The Auto speed reference is issued by the PLC through a communications module installed in the drive.
Since the internal communications is designated as Port 5, [Speed Ref A Sel] is set to "DPI Port 5" with the drive running from the Auto source.

Attain Manual Control

- Press ALT then Auto/Man on the HIM.

When the HIM attains manual control, the drive speed command comes from the HIM speed control keys or analog potentiometer.

Release to Auto Control

- Press ALT then Auto/Man on the HIM again.

When the HIM releases manual control, the drive speed command returns to the PLC.

PLC = Auto, Terminal Block = Manual

A process is run by a PLC when in Auto mode and requires manual control from an analog potentiometer wired to the drive terminal block. The auto speed reference is issued by the PLC through a communications module installed in the drive. Since the internal communications is designated as Port 5, [Speed Ref A Sel] is set to "DPI Port 5" with the drive running from the Auto source. Since the Manual speed reference is issued by an analog input ("Analog In 1 or 2"), [TB Man Ref Sel] is set to the same input. To switch between Auto and Manual, [Digital In4 Sel] is set to "Auto/ Manual".

Attain Manual Control

- Close the digital input. With the input closed, the speed command comes from the pot.

Release to Auto Control

- Open the digital input. With the input open, the speed command returns to the PLC.

Auto/Manual Notes

1. Manual control is exclusive. If a HIM or Terminal Block takes manual control, no other device can take manual control until the controlling device releases manual control.
2. If a HIM has manual control and power is removed from the drive, the drive will return to Auto mode when power is reapplied.
3. [Save HIM Ref], parameter 192 can enable manual mode to allow starts and jogs from the HIM in 2-wire mode.

Lifting/Torque Proving

For Lifting/Torque Proving details, refer to page C-4.

Common Bus/Precharge Notes

The following notes must be read and understood. Also refer to pages $1-8$ through $1-11$ for additional common bus information.

Important Application Notes

1. If drives without internal precharge are used (Frames $5 \& 6$ only), then:
a) precharge capability must be provided in the system to guard against possible damage, and
b) disconnect switches Must Not be used between the input of the drive and a common DC bus without the use of an external precharge device.
2. If drives with internal precharge (Frames 0-6) are used with a disconnect switch to the common bus, then:
a) an auxiliary contact on the disconnect must be connected to a digital input of the drive. The corresponding input (parameter 361-366) must be set to option 30, "Precharge Enable." This provides the proper precharge interlock, guarding against possible damage to the drive when connected to a common DC bus.
b) the drive must have firmware version 2.002 or above.

EMC Instructions

CE Conformity

Conformity with the Low Voltage (LV) Directive and Electromagnetic Compatibility (EMC) Directive has been demonstrated using harmonized European Norm (EN) standards published in the Official Journal of the European Communities. PowerFlex Drives ${ }^{(1)}$ comply with the EN standards listed below when installed according to the User and Reference Manual.

CE Declarations of Conformity are available online at: http://www.ab.com/certification/ce/docs.

Low Voltage Directive (73/23/EEC)

- EN50178 Electronic equipment for use in power installations.

EMC Directive (89/336/EEC)

- EN61800-3 Adjustable speed electrical power drive systems Part 3: EMC product standard including specific test methods.

General Notes

- If the adhesive label is removed from the top of the drive, the drive must be installed in an enclosure with side openings less than 12.5 $\mathrm{mm}(0.5 \mathrm{in}$.$) and top openings less than 1.0 \mathrm{~mm}$ (0.04 in .) to maintain compliance with the LV Directive.
- The motor cable should be kept as short as possible in order to avoid electromagnetic emission as well as capacitive currents.
- Use of line filters in ungrounded systems is not recommended.
- PowerFlex drives may cause radio frequency interference if used in a residential or domestic environment. The installer is required to take measures to prevent interference, in addition to the essential requirements for CE compliance provided in this section, if necessary.
- Conformity of the drive with CE EMC requirements does not guarantee an entire machine or installation complies with CE EMC requirements. Many factors can influence total machine/installation compliance.
- PowerFlex drives generate conducted low frequency disturbances (harmonic emissions) on the AC supply system.
${ }^{(1)} \mathrm{CE}$ Certification testing has not been performed on 600 V class drives.

General Notes (continued)

- More information regarding harmonic emissions can be found in the PowerFlex 70/700 Reference Manual (publication PFLEX-RM001).
- When operated on a public supply system, it is the responsibility of the installer or user to ensure, by consultation with the distribution network operator and Rockwell Automation, if necessary, that applicable requirements have been met.

Essential Requirements for CE Compliance

Conditions 1-6 listed below must be satisfied for PowerFlex drives to meet the requirements of EN61800-3.

1. Standard PowerFlex 700 CE compatible Drive.
2. Review important precautions/attention statements throughout this manual before installing the drive.
3. Grounding as described on page 1-4.
4. Output power, control (I/O) and signal wiring must be braided, shielded cable with a coverage of 75% or better, metal conduit, or equivalent attenuation.
5. All shielded cables should terminate with the proper shielded connector.
6. Conditions in Table 1.I.

Table 1.I PowerFlex 700 EN61800-3 EMC Compatibility

	Second Environment (Industrial) ${ }^{(1)(2)}$ External filter Not Required if motor cables are restricted to design shown	First Environment Restricted Distribution
	Any Drive and Option	
0-6	Restrict Motor Cable to 30 m (98 ft.)	(2)

${ }^{(1)}$ Motor cable limited to 30 m (98 ft .) for installations in the second (industrial) enviroment without additional external line filters.
(2) Refer to the PowerFlex 70/700 Reference Manual for installations in the first (residential) environment and installations in the second environment with motor cables longer than $30 \mathrm{~m}(98 \mathrm{ft}$.).

Notes:

Start Up

This chapter describes how you start up the PowerFlex 700 Drive. Refer to Appendix B for a brief description of the LCD HIM (Human Interface Module).

For information on \ldots	See page \ldots
Prepare For Drive Start-Up	$\underline{2-1}$
Status Indicators	$\underline{2-2}$
Start-Up Routines	$\underline{2-3}$
Running S.M.A.R.T. Start	$\underline{2-4}$
Running an Assisted Start Up	$\underline{2-4}$

ATTENTION: Power must be applied to the drive to perform the following start-up procedure. Some of the voltages present are at incoming line potential. To avoid electric shock hazard or damage to equipment, only qualified service personnel should perform the following procedure. Thoroughly read and understand the procedure before beginning. If an event does not occur while performing this procedure, Do Not Proceed. Remove Power including user supplied control voltages. User supplied voltages may exist even when main AC power is not applied to then drive. Correct the malfunction before continuing.

Prepare For Drive Start-Up

Before Applying Power to the Drive

1. Confirm that all inputs are connected to the correct terminals and are secure.
2. Verify that AC line power at the disconnect device is within the rated value of the drive.
3. Verify that control power voltage is correct.

The remainder of this procedure requires that a HIM be installed. If an operator interface is not available, remote devices should be used to start up the drive.
Important: When power is first applied, the HIM may require approximately 5 seconds until commands are recognized (including the Stop key).

Applying Power to the Drive

\square 4. Apply AC power and control voltages to the drive.
If any of the six digital inputs are configured to "Stop - CF" (CF = Clear Fault) or "Enable," verify that signals are present or reconfigure [Digital Inx Sel]. If an I/O option is not installed (i.e. no I/O terminal block), verify that [Digital Inx Sel] is not configured to "Stop - CF" or "Enable." If this is not done, the drive will not start. Refer to Alarm Descriptions on page 4-10 for a list of potential digital input conflicts. If a fault code appears, refer to Chapter 4.

If the STS LED is not flashing green at this point, refer to Status Indicators below.
5. Proceed to Start-Up Routines.

Status Indicators

Figure 2.1 Drive Status Indicators

\#	Name	Color	State	Description
(1)	PWR (Power)	Green	Steady	Illuminates when power is applied to the drive.
2	STS (Status)	Green	Flashing	Drive ready, but not running and no faults are present.
			Steady	Drive running, no faults are present.
		Yellow See page 4-10	Flashing, Drive Stopped	A start inhibit condition exists, the drive cannot be started. Check parameter 214 [Start Inhibits].
			Flashing, Drive Running	An intermittent type 1 alarm condition is occurring. Check parameter 211 [Drive Alarm 1].
			Steady, Drive Running	A continuous type 1 alarm condition exists. Check parameter 211 [Drive Alarm 1].
		Red	Flashing	Fault has occurred. Check [Fault x Code] or Fault Queue.
		See page 4-4	Steady	A non-resettable fault has occurred.
(3)	PORT	Refer to the Communication Adapter User Manual.		Status of DPI port internal communications (if present).
	MOD			Status of communications module (when installed).
	NET A			Status of network (if connected).
	NET B			Status of secondary network (if connected).

Start-Up Routines

The PowerFlex 700 is designed so that start up is simple and efficient. If you have an LCD HIM, three methods are provided, allowing the user to select the desired level needed for the application.

- S.M.A.R.T. Start

This routine allows you to quickly set up the drive by programming values for the most commonly used functions (below and page 2-4).

- Assisted Start Up

This routine prompts you for information that is needed to start up a drive for most applications, such as line and motor data, commonly adjusted parameters and I/O. Two levels of Assisted Start Up are provided; Basic and Detailed. See page 2-4.

- Lifting/Torque Proving Start Up

Torque Proving applications can use the Assisted Start Up to tune the motor. However, it is recommended that the motor be disconnected from the hoist/crane equipment during the routine. If this is not possible, refer to the manual tuning procedure on page $\mathrm{C}-4$.

Important Information

Power must be applied to the drive when viewing or changing parameters. Previous programming may affect the drive status and operation when power is applied. If the I/O Cassette has been changed, a Reset Defaults operation must be performed.

Figure 2.2 Start Up Menu

${ }^{(1)}$ During Motor Tests and tuning procedures, the drive may modify certain parameter values for proper Start Up operation. These values are then reset to their original values when Start Up is complete. The affected parameters are: $053,080,276,278$ and $361-366$. If power is removed from the drive during the tests without aborting the auto-tune procedure, these parameters may not be reset to their original value. If this situation occurs, reset the drive to factory defaults and repeat the Start Up procedure.

Running S.M.A.R.T. Start

During a Start Up, the majority of applications require changes to only a few parameters. The LCD HIM on a PowerFlex 700 drive offers S.M.A.R.T. start, which displays the most commonly changed parameters. With these parameters, you can set the following functions:

S - Start Mode and Stop Mode
M - Minimum and Maximum Speed
A - Accel Time 1 and Decel Time 1
R - Reference Source
T - Thermal Motor Overload
To run a S.M.A.R.T. start routine:

Running an Assisted Start Up

Important: This start-up routine requires an LCD HIM.
The Assisted start-up routine asks simple yes or no questions and prompts you to input required information. Access Assisted Start Up by selecting "Start Up" from the Main Menu.

To perform an Assisted Start-Up

Programming and Parameters

Chapter 3 provides a complete listing and description of the PowerFlex 700 parameters. The parameters can be programmed (viewed/edited) using an LCD HIM (Human Interface Module). As an alternative, programming can also be performed using DriveExplorer ${ }^{\mathrm{TM}}$ or DriveExecutive ${ }^{\mathrm{TM}}$ software and a personal computer. Refer to Appendix \underline{B} for a brief description of the LCD HIM.

For information on ...	See page ...
About Parameters	$\underline{3-1}$
How Parameters are Organized	$\underline{3-3}$
Monitor File	$3-7$
Motor Control File	$3-9$
Speed Command File	$\underline{3-16}$
Dynamic Control File	$\underline{3-26}$
Utility File	$3-33$
Communication File	$\underline{3-46}$
Inputs \& Outputs File	$\underline{3-51}$
Applications File	$\underline{3-59}$
Pos/Spd Profile File	$3-65$
Parameter Cross Reference - by Name	$\underline{3-72}$
Parameter Cross Reference - by Number	3-75

About Parameters

To configure a drive to operate in a specific way, drive parameters may have to be set. Three types of parameters exist:

- ENUM Parameters

ENUM parameters allow a selection from 2 or more items. The LCD HIM will display a text message for each item.

- Bit Parameters

Bit parameters have individual bits associated with features or conditions. If the bit is 0 , the feature is off or the condition is false. If the bit is 1 , the feature is on or the condition is true.

- Numeric Parameters

These parameters have a single numerical value (i.e. 0.1 Volts).
The example on the following page shows how each parameter type is presented in this manual.

(5)					
읖	은	$\stackrel{\text { ¢ }}{ }$	Parameter Name \& Description	Values	
	$\stackrel{\dot{D}}{\dot{\Delta}}$	198	[Load Frm Usr Set] Loads a previously saved set of parameter values from a selected user set location in drive nonvolatile memory to active drive memory.	Default: 0 "Ready" Options: 0 "Ready" 1 "User Set 1" 2 "User Set 2" 3 "User Set 3"	(199
$\begin{aligned} & \frac{\rightharpoonup}{3} \\ & \frac{\rightharpoonup}{5} \end{aligned}$		216	[Dig In Status] Status of the digital inputs.	Read Only	361 thru 366
$\stackrel{\circ}{\circ}$	믕	$\begin{aligned} & 434 \\ & F V \end{aligned}$	[Torque Ref B Mult] Defines the value of the multiplier for the [Torque Ref B Sel] selection.	Default: 1.0 Min/Max: $-1+32767.0$ Units: 0.1	053

How Parameters are Organized

The LCD HIM displays parameters in a File-Group-Parameter or Numbered List view order. To switch display mode, access the Main Menu, press ALT, then Sel while cursor is on the parameter selection. In addition, using [Param Access Lvl], the user has the option to display all parameters, commonly used parameters or diagnostic parameters.

To simplify programming, the displayed parameters will change according to the selection made with [Motor Cntl Sel]. For example, if "FVC Vector" is selected, the parameters associated solely with other operations such as Volts per Hertz or Sensorless Vector will be hidden. Refer to pages 3-4 and 3-5.

File-Group-Parameter Order

This simplifies programming by grouping parameters that are used for similar functions. The parameters are organized into files. Each file is divided into groups, and each parameter is an element in a group. By default, the LCD HIM displays parameters by File-Group-Parameter view.

Numbered List View
All parameters are in numerical order.

Basic Parameter View

Parameter 196 [Param Access Lvl] set to option 0 "Basic."

File	Group	Parameters					
Monitor	Metering	Output Freq Commanded Spee Commanded Torqu Output Current Torque Current DC Bus Voltage	001 d002 **024 003 004 012				
Motor Control	Motor Data	Motor NP Volts Motor NP FLA Motor NP Hertz	$\begin{aligned} & 041 \\ & 042 \\ & 043 \end{aligned}$	Motor NP RPM Motor NP Power Mtr NP Pwr Units	$\begin{aligned} & 044 \\ & 045 \\ & 046 \end{aligned}$	Motor OL Hertz Motor Poles	$\begin{aligned} & 047 \\ & 049 \end{aligned}$
	Torq Attributes	Motor Cntl Sel Maximum Voltage Maximum Freq Autotune	$\begin{aligned} & 053 \\ & 054 \\ & 055 \\ & 061 \end{aligned}$	Autotune Torque** Inertia Autotune** Torque Ref A Sel** Torque Ref A Hi**	$\begin{aligned} & 066 \\ & 067 \\ & 427 \\ & 428 \end{aligned}$	Torque Ref A Lo** Pos Torque Limit** Neg Torque Limit**	
	Speed Feedback	Motor Fdbk Type	412	Encoder PPR	413		
Speed Command	Spd Mode \& Limits	Speed Units Feedback Select	$\begin{aligned} & 079 \\ & 080 \end{aligned}$	Minimum Speed Maximum Speed	$\begin{aligned} & 081 \\ & 082 \end{aligned}$	Rev Speed Limit**	
Femecommen	Speed References	Speed Ref A Sel Speed Ref A Hi Speed Ref A Lo Speed Ref B Sel	$\begin{aligned} & 090 \\ & 091 \\ & 092 \\ & 093 \end{aligned}$	Speed Ref B Hi Speed Ref B Lo TB Man Ref Sel TB Man Ref Hi	$\begin{aligned} & 094 \\ & 095 \\ & 096 \\ & 097 \end{aligned}$	TB Man Ref Lo Pulse Input Ref	$\begin{aligned} & 098 \\ & 099 \end{aligned}$
	Discrete Speeds	Jog Speed 1 Preset Speed 1-7	$\begin{aligned} & 100 \\ & 101-107 \end{aligned}$	Jog Speed 2	108		
Dynamic Control	Ramp Rates	Accel Time 1 Accel Time 2	$\begin{aligned} & 140 \\ & 141 \end{aligned}$	Decel Time 1 Decel Time 2	$\begin{aligned} & 142 \\ & 143 \end{aligned}$	S-Curve \%	146
Framicamion	Load Limits	Current Lmt Sel	147	Current Lmt Val	148		
	Stop/Brake Modes	Stop/Brk Mode A Stop/Brk Mode B	$\begin{aligned} & 155 \\ & 156 \end{aligned}$	DC Brk Lvl Sel DC Brake Level DC Brake Time	$\begin{aligned} & 157 \\ & 158 \\ & 159 \end{aligned}$	Bus Reg Mode A Bus Reg Mode B DB Resistor Type	$\begin{aligned} & 161 \\ & 162 \\ & 163 \\ & \hline \end{aligned}$
	Restart Modes	Start At PowerUp	168	Auto Rstrt Tries	174	Auto Rstrt Delay	175
	Power Loss	Power Loss Mode	184	Power Loss Time	185	Power Loss Level	186
Utility	Direction Config	Direction Mode	190				
	Drive Memory	Param Access Lvl Reset To Defalts	$\begin{aligned} & 196 \\ & 197 \end{aligned}$	Load Frm Usr Set Save To User Set	$\begin{aligned} & 198 \\ & 199 \end{aligned}$	Language	201
	Diagnostics	Start Inhibits	214	Dig In Status	216	Dig Out Status	217
	Faults	Fault Config 1	238				
	Alarms	Alarm Config 1	259				
Inputs \& Outputs	Analog Inputs	Anlg In Config Analog In1 Hi Analog $\ln 1$ Lo	$\begin{aligned} & 320 \\ & 322 \\ & 323 \end{aligned}$	Analog $\ln 2 \mathrm{Hi}$ Analog In2 Lo	$\begin{aligned} & 325 \\ & 326 \end{aligned}$		
Noussaine	Analog Outputs	Analog Out1, 2 Sel Analog Out1 Hi	$\begin{aligned} & 342 \\ & 343 \end{aligned}$	Analog Out1, 2 Lo Analog Out1, 2 Sel	$\begin{aligned} & 344 \\ & 345 \end{aligned}$	Analog Out2 Hi Analog Out1, 2 Lo	$\begin{aligned} & 346 \\ & 347 \end{aligned}$
	Digital Inputs	Digital $\ln 1-6 \mathrm{Sel}$	361-366				
	Digital Outputs	Digital Out1-3 Sel	380-388	Dig Out1-3 Level	381-389		

[^3]
Advanced Parameter View

Parameter 196 [Param Access Lvl] set to option 1 "Advanced."

File	Group	Parameters					
Monitor	Metering	Output Freq	001	Flux Current	005	DC Bus Memory	013
		Commanded Spee		Output Voltage	006	Analog In1 Value	016
		Ramped Speed	022	Output Power	007	Analog In2 Value	017
		Speed Reference	023	Output Powr Fctr	008	Elapsed kWh	014
		Commanded Torqu	**024	Elapsed MWh	009	PTC HW Value	018
		Speed Feedback	025	Elapsed Run Time	010	Spd Fdbk No Filt	021
		Output Current	003	MOP Reference	011		
		Torque Current	004	DC Bus Voltage	012		
	Drive Data	Rated kW	026	Rated Amps	028		
		Rated Volts	027	Control SW Ver	029		
Motor Control	Motor Data	Motor Type	040	Motor NP RPM	044	Motor OL Factor	048
		Motor NP Volts	041	Motor NP Power	045	Motor Poles	049
Mata cino		Motor NP FLA	042	Mtr NP Pwr Units	046		
		Motor NP Hertz	043	Motor OL Hertz	047		
	Torq Attributes	Motor Cntl Sel	053	Flux Current Ref	063	Torque Ref $\mathrm{BHi**}$	432
		Maximum Voltage	054	IXo Voltage Drop	064	Torque Ref B Lo**	433
		Maximum Freq	055	Autotune Torque**	066	Torq Ref B Mult**	434
		Compensation	056	Inertia Autotune**	067	Torque Setpoint 1 **	* 435
		Flux Up Mode	057	Torque Ref A Sel**	427	Torque Setpoint 2*	* 438
		Flux Up Time	058	Torque Ref A Hi**	428	Pos Torque Limit**	436
		SV Boost Filter	059	Torque Ref A Lo**	429	Neg Torque Limit**	437
		Autotune	061	Torq Ref A Div**	430	Control Status**	440
		IR Voltage Drop	062	Torque Ref B Sel**	431	Mtr Tor Cur Ref**	441
	Volts per Hertz	Start/Acc Boost	069	Break Voltage*	071		
		Run Boost*	070	Break Frequency*	072		
	Speed Feedback	Motor Fdbk Type	412	Fdbk Filter Sel	416	Marker Pulse	421
		Encoder PPR	413	Notch Filter Freq**	419	Pulse In Scale	422
		Enc Position Fdbk	414	Notch Filter K**	420	Encoder Z Chan	423
		Encoder Speed	415				
Speed Command	Spd Mode \& Limits	Speed Units	079	Overspeed Limit	083	Skip Freq Band*	087
		Feedback Select	080	Skip Frequency 1*	084	Speed/Torque Mod	**088
		Minimum Speed	081	Skip Frequency 2*	085	Rev Speed Limit**	
		Maximum Speed	082	Skip Frequency 3*	086		
Speancomme	Speed References	Speed Ref A Sel	090	Speed Ref B Hi	094	TB Man Ref Hi	097
		Speed Ref A Hi	091	Speed Ref B Lo	095	TB Man Ref Lo	098
		Speed Ref A Lo	092	TB Man Ref Sel	096	Pulse Input Ref	099
		Speed Ref B Sel	093				
	Discrete Speeds	Jog Speed 1	100	Preset Speed 1-7	101-107	Jog Speed 2	108
	Speed Trim	Trim In Select	117	Trim Hi	119	Trim \% Setpoint	116
		Trim Out Select	118	Trim Lo	120		
	Slip Comp	Slip RPM @ FLA	121	Slip Comp Gain*	122	Slip RPM Meter	123
	Process PI	PI Configuration	124	PI Upper Limit	132	PI Reference Lo	461
		PI Control	125	PI Preload	133	PI Feedback Hi	462
		PI Reference Sel	126	PI Status	134	PI Feedback Lo	463
		PI Setpoint	127	PI Ref Meter	135	PI BW Filter	139
		PI Feedback Sel	128	PI Fdback Meter	136	PI Deriv Time	459
		PI Integral Time	129	PI Error Meter	137	PI Output Gain	464
		PI Prop Gain	130	PI Output Meter	138		
		PI Lower Limit	131	PI Reference Hi	460		
	Speed Regulator	Ki Speed Loop**	445	Kf Speed Loop**	447	Total Inertia**	450
		Kp Speed Loop**	446	Speed Desired BW	**449	Speed Loop Meter	
Dynamic Control	Ramp Rates	Accel Time 1, 2	140,141	Decel Time 1, 2	142,143	S Curve \%	146
	Load Limits	Current Lmt Sel	147	Drive OL Mode	150	Regen Power Limit	**153
Framicomion		Current Lmt Val	148	PWM Frequency	151	Current Rate Limit	**154
		Current Lmt Gain	149	Droop RPM @ FLA			
	Stop/Brake Modes	Stop Mode	155,156	Bus Reg Ki*	160	Bus Reg Kd*	165
		DC Brk Lvl Sel	157	Bus Reg Mode	161,162	Flux Braking	166
		DC Brake Level	158	DB Resistor Type	163	DB While Stopped	145
		DC Brake Time	159	Bus Reg Kp*	164		
	Restart Modes	Start At PowerUp	168	Auto Rstrt Delay	175	Wake Time	181
		Flying Start En	169	Sleep-Wake Mode	178	Sleep Level	182
		Flying StartGain	170	Sleep-Wake Ref	179	Sleep Time	183
		Auto Rstrt Tries	174	Wake Level	180	Powerup Delay	167

[^4]

Monitor File

Motor Control File

$\stackrel{\text { 읖 }}{\underline{i n}}$	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	울	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
운 응 8 을 을		$\begin{gathered} 040 \\ 0 \end{gathered}$	[Motor Type] Set to match the type of motor connected. ${ }^{(1)}$ Important: Selecting option 1 or 2 also requires selection of "Custom V / Hz," option 2 in parameter 53.	$\begin{aligned} & \text { Defau } \\ & \text { Optior } \end{aligned}$	0 "Induction" 0 "Induction" 1 "Synchr Reluc"(1) 2 "Synchr PM" (1)	$\underline{053}$
		$\begin{gathered} 041 \\ 0 \end{gathered}$	[Motor NP Volts] Set to the motor nameplate rated volts.	Default: Min/Ma Units:	Based on Drive Rating $0.0 /[$ Rated Volts] 0.1 VAC	
		$\begin{gathered} 042 \\ 0 \end{gathered}$	[Motor NP FLA] Set to the motor nameplate rated full load amps.	Default: Min/Ma Units:	Based on Drive Rating $0.0 /[$ Rated Amps] $\times 2$ 0.1 Amps	$\begin{aligned} & 047 \\ & \hline 048 \\ & \hline \end{aligned}$
		043	[Motor NP Hertz] Set to the motor nameplate rated frequency.	Default: Min/Ma Units:	Based on Drive Cat. No. $\begin{aligned} & 5.0 / 400.0 \mathrm{~Hz} \\ & 0.1 \mathrm{~Hz} \end{aligned}$	
		044 0	[Motor NP RPM] Set to the motor nameplate rated RPM.	Default: Min/Ma Units:	$\begin{aligned} & 1750.0 \text { RPM } \\ & \text { 60.0/24000.0 RPM } \\ & \text { 1.0 RPM } \end{aligned}$	
		$\begin{gathered} 045 \\ 0 \end{gathered}$	[Motor NP Power] Set to the motor nameplate rated power.	Default: Min/Ma Units:	Based on Drive Rating 0.00/1000.00 $0.01 \mathrm{~kW} / \mathrm{HP}$ See [Mtr NP Pwr Units]	046
		$\begin{gathered} 046 \\ 0 \end{gathered}$	[Mtr NP Pwr Units] Selects the motor power units to be used. "Convert HP" = converts all power units to Horsepower. "Convert kW" = converts all power units to kilowatts.	Defaul: Option	Drive Rating Based 0 "Horsepower" 1 "kiloWatts" 2 "Convert HP" 3 "Convert kW"	

읖	응	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
		$\begin{gathered} 047 \\ 0 \end{gathered}$	[Motor OL Hertz] Selects the output frequency below which the motor operating current is derated. The motor thermal overload will generate a fault at lower levels of current.	Default: Min/Max Units:	Motor NP Hz/3 0.0/Motor NP Hz 0.1 Hz	$\underline{042}$
		048 0	[Motor OL Factor] Sets the operating level for the motor overload. $\underset{\text { FLA }}{\text { Motor }} \underset{\text { Factor }}{\text { OL }}=\underset{\text { Opevel }}{\text { Operating }}$	Default: Min/Max Units:	$\begin{aligned} & 1.00 \\ & 0.20 / 2.00 \end{aligned}$ 0.01	$\begin{array}{r}042 \\ 220 \\ \hline 1\end{array}$
		$\begin{gathered} 049 \\ 0 \end{gathered}$	[Motor Poles] Defines the number of poles in the motor.	Default: Min/Max Units:	$\begin{aligned} & 4 \\ & 2 / 40 \\ & 1 \text { Pole } \end{aligned}$	
운 0 8 8 0 0 0		$\begin{gathered} 053 \\ 0 \end{gathered}$	[Motor Cntl Sel] Sets the method of motor control used in the drive. When "Adj Voltage" is selected, voltage control is independent from frequency control. The voltage and frequency components have independent references and accel/decel rates. Typical applications include non-motor loads or power supplies. Important: "FVC Vector" mode requires autotuning of the motor. Being coupled to the load will determine inertia (preferably lightly-loaded). Total Inertia (parameter 450) will have to be estimated if uncoupled for tuning of the speed loop or separately adjust Ki and Kp (parameters 445 \& 446).	Default: 0 "Sensrls Vect" Options: 0 "Sensrls Vect" 1 "SV Economize" 2 "Custom V/Hz" 3 "Fan/Pmp V/Hz" 4 "FVC Vector" 5 "Adj Voltage"		
		054	[Maximum Voltage] Sets the highest voltage the drive will output.	Default: Min/Max Units:	Drive Rated Volts Rated Volts $\times 0.25 /$ Rated Volts 0.1 VAC	
		$\begin{gathered} 055 \\ 0 \end{gathered}$	[Maximum Freq] Sets the highest frequency the drive will output. Refer to [Overspeed Limit], 083.	Default: Min/Max Units:	$\begin{aligned} & 110.0 \text { or } 130.0 \mathrm{~Hz} \\ & 5.0 / 420.0 \mathrm{~Hz} \\ & 0.1 \mathrm{~Hz} \end{aligned}$	083

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 츺 \& \& \% \& Parameter Name \& Description See page 3-2 for symbol descriptions \& Values \& \& \%
¢
¢
\%
¢ \\
\hline \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{} \& 056 \& \begin{tabular}{l}
[Compensation] \\
Factory Default Bit Values \\
Option Descriptions
\end{tabular} \& \begin{tabular}{l}
int (except \(F\) \\
overvoltage \\
d). \\
es, disabling e accel/dec d for future r power dia \\
isabling may y not need tion of the s. cy from de FVC Vector
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& 1=\text { Enabled } \\
\& 0=\text { Disabled } \\
\& \text { x }=\text { Reserved }
\end{aligned}
\] \\
VC Vector mode). \\
protection for long cable \\
jerk removes a short el ramp. \\
enhancements. gnostic tests which run at \\
y improve torque regulation d). \\
applied voltage, effectively \\
creasing to 2 kHz at low r mode without encoder.
\end{tabular} \& \\
\hline \& \& 057 \& \begin{tabular}{l}
[Flux Up Mode] \\
Auto \(=\) Flux is established for a calculated time period based on motor nameplate data. [Flux Up Time] is not used. \\
Manual = Flux is established for [Flux Up Time] before acceleration.
\end{tabular} \& Default: Options: \& \(\begin{array}{ll}0 \& \text { "Manual" } \\ 0 \& \text { "Manual" } \\ 1 \& \text { "Automatic" }\end{array}\) \& \(\underline{053}\) \\
\hline \& \& 058 \& \begin{tabular}{l}
[Flux Up Time] \\
Sets the amount of time the drive will use to try and achieve full motor stator flux. When a Start command is issued, DC current at current limit level is used to build stator flux before accelerating.
\end{tabular} \& Default: Min/Max: Units: \& \[
\begin{aligned}
\& 0.000 \text { Secs } \\
\& 0.000 / 5.000 \text { Secs } \\
\& 0.001 \text { Secs }
\end{aligned}
\] \& \(\underline{053}\) \\
\hline \& \& 059 \& \begin{tabular}{l}
[SV Boost Filter] \\
Sets the amount of filtering used to boost voltage during Sensorless Vector and FVC Vector (encoderless) operation.
\end{tabular} \& Default: Min/Max: Units: \& \begin{tabular}{l}
\[
500
\] \\
0/32767

\end{tabular} \&

\hline
\end{tabular}

읖	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
		066 FV	[Autotune Torque] Specifies motor torque applied to the motor during the flux current and inertia tests performed during an autotune.	Default: Min/Max: Units:	$\begin{aligned} & \hline 50.0 \% \\ & 0.0 / 150.0 \% \\ & 0.1 \% \end{aligned}$	$\underline{053}$
		$\begin{aligned} & 067 \\ & 0 \\ & \text { FV } \end{aligned}$	[Inertia Autotune] Provides an automatic method of setting [Total Inertia]. This test is automatically run during Start-Up motor tests. Important: If using rotate tune for "Sensrls Vect" mode, the motor should be uncoupled from the load or results may not be valid. With "FVC Vector", either a coupled or uncoupled load will produce valid result. "Ready" = Parameter returns to this setting following a completed inertia tune. "Inertia Tune" = A temporary command that initiates an inertia test of the motor/ load combination. The motor will ramp up and down, while the drive measures the amount of inertia.	Default: Options:	$\begin{array}{ll} \hline 0 & \text { "Ready" } \\ 0 & \text { "Ready" } \\ 1 & \text { "Inertia Tune" } \end{array}$	$\frac{053}{450}$
		$\begin{gathered} 427 \\ 431 \\ \mathrm{O} \\ \mathrm{FV} \end{gathered}$	[Torque Ref A Sel] [Torque Ref B Sel] Selects the source of the external torque reference to the drive. How this reference is used is dependent upon [Speed/ Torque Mod]. ${ }^{(1)}$ See Appendix B for DPI port locations.	Default: Options:		$\underline{053}$
		$\begin{aligned} & 428 \\ & 432 \\ & \text { FV } \end{aligned}$	[Torque Ref A Hi] [Torque Ref B Hi] Scales the upper value of the [Torque Ref A Sel] selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & 100.0 \% \\ & 100.0 \% \\ & -1+800.0 \% \\ & 0.1 \% \end{aligned}$	053
		$\begin{aligned} & 429 \\ & 433 \\ & \text { FV } \end{aligned}$	[Torque Ref A Lo] [Torque Ref B Lo] Scales the lower value of the [Torque Ref A Sel] selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \% \\ & 0.0 \% \\ & -/+800.0 \% \\ & 0.1 \% \end{aligned}$	053
		$\begin{aligned} & 430 \\ & F V \end{aligned}$	[Torq Ref A Div] Defines the value of the divisor for the [Torque Ref A Sel] selection.	Default: Min/Max: Units:	$\begin{aligned} & 1.0 \\ & 0.1 / 3276.7 \\ & 0.1 \end{aligned}$	$\underline{053}$
		$\begin{aligned} & 434 \\ & F V \end{aligned}$	[Torque Ref B Mult] Defines the value of the multiplier for the [Torque Ref B Sel] selection.	Default: Min/Max: Units:	$\begin{aligned} & 1.0 \\ & -/+32767.0 \\ & 0.1 \\ & \hline \end{aligned}$	053

읖	$\begin{aligned} & \text { 을 } \\ & \text { 웅 } \end{aligned}$	-	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		(\%
		071	[Break Voltage] Sets the voltage the drive will output at [Break Frequency]. Refer to parameter 083 [Overspeed Limit].	Default: Min/Max Units:	$\begin{aligned} & {[\text { [Motor NP Volts] } \times 0.25} \\ & 0.0 /[M o t o r ~ N P ~ V o l t s] ~ \\ & 0.1 \text { VAC } \end{aligned}$	$\underline{053}$
		072	[Break Frequency] Sets the frequency the drive will output at [Break Voltage]. Refer to parameter 083.	Default: Min/Max Units:	[Motor NP Hz] $\times 0.25$ 0.0/[Maximum Freq] 0.1 Hz	$\begin{aligned} & \underline{053} \\ & \hline 071 \\ & \hline \end{aligned}$
		412	[Motor Fdbk Type] Selects the encoder type; single channel or quadrature. Options $1 \& 3$ detect a loss of encoder signal (when using differential inputs) regardless of the [Feedback Select], param. 080 setting. For FVC Vector mode, use a quadrature encoder only (option 0/1). If a single channel encoder is used (option $2 / 3$) in sensorless vector or V/Hz mode, select "Reverse Dis" (option 2) in param. 190.	Default: Options:	0 "Quadrature" 0 "Quadrature" 1 "Quad Check" 2 "Single Chan" 3 "Single Check"	
		$\begin{gathered} 413 \\ 0 \end{gathered}$	[Encoder PPR] Contains the encoder pulses per revolution. For improved operation in FVC Vector mode, PPR should be \geq (64 x motor poles).	Default: Min/Max Units:	$\begin{aligned} & 1024 \text { PPR } \\ & \text { 2/20000 PPR } \\ & \text { 1 PPR } \end{aligned}$	
		414	[Enc Position Fdbk] Displays raw encoder pulse count. For single channel encoders, this count will increase (per rev.) by the amount in [Encoder PPR]. For quadrature encoders this count will increase by 4 times the amount defined in [Encoder PPR].	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -/+2147483647 \\ & 1 \end{aligned}$	
		415	[Encoder Speed] Provides a monitoring point that reflects speed as seen from the feedback device.	Default: Min/Max Units:	$\begin{aligned} & \text { Read Only } \\ & -/+420.0 \mathrm{~Hz} \\ & -++22200.0 \mathrm{RPM} \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \mathrm{RPM} \end{aligned}$	079
		416	[Fdbk Filter Sel] Selects the type of feedback filter desired. "Light" uses a 35/49 radian feedback filter. "Heavy" uses a 20/40 radian feedback filter.	Default: Options:	0 "None" 0 "None" 1 "Light" 2 "Heavy"	
		$\begin{aligned} & 419 \\ & F V \end{aligned}$	[Notch FilterFreq] Sets the center frequency for an optional 2 -pole notch filter. Filter is applied to the torque command. "0" disables this filter.	Default: Min/Max Units:	$\begin{aligned} & 0.0 \mathrm{~Hz} \\ & 0.0 / 500.0 \mathrm{~Hz} \\ & 0.1 \mathrm{~Hz} \end{aligned}$	$\underline{053}$
		$\begin{aligned} & 420 \\ & F \\ & F \end{aligned}$	[Notch Filter K] Sets the gain for the 2-pole notch filter.	Default: Min/Max Units:	0.3 Hz $0.1 / 0.9 \mathrm{~Hz}$ 0.1 Hz	053

으플	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		\%
은 2 0 0		$\begin{gathered} 421 \\ 0 \end{gathered}$	[Marker Pulse] Latches the raw encoder count at each marker pulse.	Default: Min/Max Units:	$\begin{aligned} & \hline \text { Read Only } \\ & -/+2147483647 \\ & 1 \end{aligned}$	
		$\begin{gathered} 422 \\ 0 \end{gathered}$	[Pulse In Scale] Sets the scale factor/gain for the Pulse Input when P423 is set to "Pulse Input." Calculate for the desired speed command as follows: for Hz, [Pulse In Scale] = $\frac{\text { Input Pulse Rate (Hz) }}{\text { Desired Cmd. (Hz) }}$ for RPM, [Pulse In Scale] = $\frac{\text { Input Pulse Rate }(\mathrm{Hz})}{\text { Desired Cmd. (RPM) }} \mathrm{x} \frac{120}{[\text { Motor Poles] }}$	Default: Min/Max Units:	$\begin{aligned} & 64 \\ & 2 / 20000 \\ & 1 \end{aligned}$	
		$\begin{gathered} 423 \\ 0 \end{gathered}$	[Encoder Z Chan] Defines if the input wired to terminals 5 \& 6 of the Encoder Terminal Block will be used as a Pulse or Marker input. Options 1 \& 3 detect a loss of signal (when using differential inputs) regardless of the [Feedback Select], param. 080 setting. When option 2 or 3 is used with Profile/ Indexer mode, the "homing" routine will position to the nearest marker pulse off of the home limit switch.	Default: Options:	0 "Pulse Input" 0 "Pulse Input" 1 "ulse Check" 2 "Marker Input" 3 "Marker Check"	

Speed Command File

$\stackrel{0}{\mathrm{i}}$	$\begin{aligned} & \text { 을 } \\ & \frac{\partial}{0} \end{aligned}$	i	Parameter Name \& Description See page 3-2 for symbol descritions	Values			¢ $\mathbf{0}$ ¢ ¢ ¢
		079	[Speed Units]	Default:	0	"Hz"	
			Selects the units to be used for all speed related parameters. Options 0 \& 1 indicate status only. Options 2 \& 3 will convert/configure the drive for that selection. "Convert Hz" (2) - converts all speed based parameters to Hz , and changes the value proportionately (i.e. 1800 RPM $=60 \mathrm{~Hz}$). "Convert RPM" (3) - converts all speed based parameters to RPM, and changes the value proportionately.	Options:	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	"Hz" "RPM" "Convert Hz" "Convert RPM"	

으ㅍㅡㅡㄹ	은	$\stackrel{\text { \% }}{ }$	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		(
	o을o응	$\begin{gathered} 080 \\ 0 \end{gathered}$	[Feedback Select] Selects the source for motor speed feedback. Note that all selections are available when using Process PI. "Open Loop" (0) - no encoder is present, and slip compensation is not needed. "Slip Comp" (1) - tight speed control is needed, and encoder is not present. "Encoder" (3) - an encoder is present. "Simulator" (5) - Simulates a motor for testing drive operation \& interface check.	Default: Options:	0 "Open Loop" 0 "Open Loop" 1 "Slip Comp" 2 "Reserved" 3 "Encoder" 4 "Reserved" 5 "Simulator"	$\frac{412}{152}$
		$\begin{gathered} 081 \\ 0 \end{gathered}$	[Minimum Speed] Sets the low limit for speed reference after scaling is applied. Refer to parameter 083 [Overspeed Limit].	Min/Max: Units:	$\begin{aligned} & 0.0 \\ & 0.0 /[\mathrm{Maximum} \text { Speed] } \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \mathrm{RPM} \end{aligned}$	$\underline{079}$ 083 092 095
			[Maximum Speed] Sets the high limit for speed reference after scaling is applied. Refer to parameter 083 [Overspeed Limit].	Default: Min/Max: Units:	$\begin{aligned} & 50.0 \text { or } 60.0 \mathrm{~Hz} \text { (volt class) } \\ & \text { [Motor NP RPM] } \\ & 5.0 / 400.0 \mathrm{~Hz} \\ & 75.0 / 24000.0 \mathrm{RPM} \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \mathrm{RPM} \end{aligned}$	$\underline{055}$ $\underline{079}$ 083 091 094 $\underline{0202}$
		083	[Overspeed Limit] Sets the incremental amount of the output frequency (above [Maximum Speed]) allowable for functions such as slip compensation. [Maximum Speed] + [Overspeed Limit] must be \leq [Maximum Freq]	Default: Min/Max: Units: equency Range Current Limit equency Range Frequency Range	$\begin{aligned} & 10.0 \mathrm{~Hz} \\ & 300.0 \mathrm{RPM} \\ & 0.0 / 20.0 \mathrm{~Hz} \\ & 0.0 / 600.0 \mathrm{RPM} \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \mathrm{RPM} \end{aligned}$	$\frac{055}{079}$ 082 i
		$\begin{aligned} & 084 \\ & 085 \\ & 086 \end{aligned}$	[Skip Frequency 1] [Skip Frequency 2] [Skip Frequency 3] Sets a frequency at which the drive will not operate. [Skip Frequency 1-3] and [Skip Frequency Band] must not equal 0.	Default: Default: Default: Min/Max: Units:	0.0 Hz 0.0 Hz 0.0 Hz $-+[\mathrm{Maximum}$ Speed] 0.1 Hz	

읖	은	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
		$\begin{gathered} 090 \\ 0 \end{gathered}$	[Speed Ref A Sel] Selects the source of the speed reference to the drive unless [Speed Ref B Sel] or [Preset Speed 1-7] is selected. (1) See Appendix B for DPI port locations.			
		091	[Speed Ref A Hi] Scales the upper value of the [Speed Ref A Sel] selection when the source is an analog input.		$\begin{aligned} & \text { [Maximum Speed] } \\ & -/+[\text { Maximum Speed }] \\ & 0.1 \mathrm{~Hz} \\ & 0.01 \mathrm{RPM} \end{aligned}$	$\frac{079}{082}$
		092	[Speed Ref A Lo] Scales the lower value of the [Speed Ref A Sel] selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \\ & -/+[\text { Maximum Speed }] \\ & 0.1 \mathrm{~Hz} \\ & 0.01 \mathrm{RPM} \end{aligned}$	$\underline{079}$
		093	[Speed Ref B Sel] See [Speed Ref A Sell].	Default: Options:	11 "Preset Spd1" See [Speed Ref A Sel]	$\begin{aligned} & \text { See } \\ & 090 \\ & \hline \end{aligned}$
		094	[Speed Ref B Hi] Scales the upper value of the [Speed Ref $\mathrm{B} \mathrm{Sel}]$ selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & \text { [Maximum Speed] } \\ & -/+[\mathrm{Maximum} \text { Speed }] \\ & 0.1 \mathrm{~Hz} \\ & 0.01 \mathrm{RPM} \end{aligned}$	$\underline{079}$
		095	[Speed Ref B Lo] Scales the lower value of the [Speed Ref B Sell selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \\ & -l+[\mathrm{Maximum} \text { Speed }] \\ & 0.1 \mathrm{~Hz} \\ & 0.01 \mathrm{RPM} \end{aligned}$	$\underline{079}$ 090 093

읖	$\begin{aligned} & \text { 으́ } \\ & \frac{\mathbf{O}}{\mathbf{j}} \end{aligned}$	<	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
	Speed References	$\begin{gathered} 096 \\ 09 \end{gathered}$	[TB Man Ref Sel] Sets the manual speed reference source when a digital input is configured for "Auto/Manual." (1) "Analog In 2" is not a valid selection if it was selected for any of the following: - [Trim In Select] - [PI Feedback Sel] - [PI Reference Sel] - [Current Lmt Sel] - [Sleep-Wake Ref]	Default: Options:	$\begin{array}{ll} \hline 1 & \text { "Analog } \ln 1 " \\ 1 & \text { "Analog } \ln 1 " \\ 2 & \text { "Analog } \ln 2 "(1) \\ 3-8 & \text { "Reserved" } \\ 9 & \text { "MOP Level" } \end{array}$	$\underline{097}$
		097	[TB Man Ref Hi] Scales the upper value of the [TB Man Ref Sel] selection when the source is an analog input.	Default: Min/Max: Units:	[Maximum Speed] $-1+[$ Maximum Speed] 0.1 Hz 0.01 RPM	$\underline{079}$
		098	[TB Man Ref Lo] Scales the lower value of the [TB Man Ref Sell selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \\ & -++[\text { Maximum Speed }] \\ & 0.1 \mathrm{~Hz} \\ & 0.01 \mathrm{RPM} \end{aligned}$	$\underline{079}$
		099	[Pulse Input Ref] Displays the pulse input value as seen at terminals 5 and 6 of the Encoder Terminal Block, if [Encoder Z Chan], parameter 423 is set to "Pulse Input."	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -/+420.0 \mathrm{~Hz} \\ & -/+25200.0 \mathrm{RPM} \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \mathrm{RPM} \end{aligned}$	
		100	[Jog Speed 1] Sets the output frequency when Jog Speed 1 is selected.	Default: Min/Max: Units:	$\begin{aligned} & 10.0 \mathrm{~Hz} \\ & 300.0 \mathrm{RPM} \\ & -/+[\mathrm{Maximum} \text { Speed }] \\ & 0.1 \mathrm{~Hz} \\ & 1 \mathrm{RPM} \end{aligned}$	079
		101 102 103 104 105 106 107	[Preset Speed 1] [Preset Speed 2] [Preset Speed 3] [Preset Speed 4] [Preset Speed 5] [Preset Speed 6] [Preset Speed 7] Provides an internal fixed speed command value. In bipolar mode direction is commanded by the sign of the reference.	Default: Min/Max: Units:	$5.0 \mathrm{~Hz} / 150 \mathrm{RPM}$ $10.0 \mathrm{~Hz} / 300 \mathrm{RPM}$ $20.0 \mathrm{~Hz} / 600 \mathrm{RPM}$ $30.0 \mathrm{~Hz} / 900 \mathrm{RPM}$ $40.0 \mathrm{~Hz} / 1200 \mathrm{RPM}$ $50.0 \mathrm{~Hz} / 1500 \mathrm{RPM}$ $60.0 \mathrm{~Hz} / 1800 \mathrm{RPM}$ $-1+[$ Maximum Speed] 0.1 Hz 1 RPM	$\underline{079}$ $\underline{090}$ $\underline{093}$
		108	[Jog Speed 2] Sets the output frequency when Jog Speed 2 is selected.	Default: Min/Max: Units:	$\begin{aligned} & 10.0 \mathrm{~Hz} \\ & 300.0 \mathrm{RPM} \\ & -/+[\mathrm{Maximum} \text { Speed }] \\ & 0.1 \mathrm{~Hz} \\ & 1 \mathrm{RPM} \end{aligned}$	

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

은	은	2'	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
		127	[PI Setpoint] Provides an internal fixed value for process setpoint when [PI Reference Sel] is set to "PI Setpoint."	Default: Min/Max: Units:	$\begin{aligned} & 50.00 \% \\ & -/+100.00 \% \text { of Maximum } \\ & \text { Process Value } \\ & 0.01 \% \end{aligned}$	124 thru 138
		128	[PI Feedback Sel] Selects the source of the PI feedback. ${ }^{(1)}$ Adjustable Voltage Mode.	Default: Options:		$\begin{array}{r}124 \\ \text { thru } \\ 138 \\ \hline\end{array}$
		129	[PI Integral Time] Time required for the integral component to reach 100\% of [PI Error Meter]. Not functional when the PI Hold bit of [PI Control] = "1" (enabled).	Default: Min/Max: Units:	$\begin{aligned} & \text { 2.00 Secs } \\ & \text { 0.00/100.00 Secs } \\ & 0.01 \text { Secs } \end{aligned}$	$\begin{aligned} & \frac{124}{\text { thru }} \\ & 138 \\ & \hline \end{aligned}$
		130	[PI Prop Gain] Sets the value for the PI proportional component. PI Error x PI Prop Gain = PI Output	Default: Min/Max: Units:	$\begin{aligned} & 1.0 \\ & 0.00 / 100.00 \\ & 0.01 \end{aligned}$	$\begin{aligned} & \frac{124}{\text { thru }} \\ & 138 \end{aligned}$
		131	[PI Lower Limit] Sets the lower limit of the PI output.	Default: Min/Max: Units:	$\begin{aligned} & \text {-[Maximum Freq] } \\ & -100 \% \\ & -+400.0 \mathrm{~Hz} \\ & --+800.0 \% \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & \frac{079}{124} \\ & \hline \text { thru } \\ & 138 \\ & \hline \end{aligned}$
		132	[PI Upper Limit] Sets the upper limit of the PI output.	Default: Min/Max: Units:	$\begin{aligned} & +[\text { Maximum Freq] } \\ & 100 \% \\ & -+400.0 \mathrm{~Hz} \\ & -/+800.0 \% \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \% \end{aligned}$	$\begin{aligned} & \frac{079}{124} \\ & \hline \text { thru } \\ & 138 \\ & \hline \end{aligned}$
		133	[PI Preload] Sets the value used to preload the integral component on start or enable.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \mathrm{~Hz} \\ & 100.0 \% \\ & \text { [PI Lower Limit]/] } \\ & \text { [PI Upper Limit] } \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \% \end{aligned}$	$\begin{array}{\|l} \hline 079 \\ \hline 124 \\ \hline \text { thru } \\ 138 \\ \hline \end{array}$

으플	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		[
0 2 0 0 0 0 0 윤		$\begin{aligned} & 450 \\ & F V \end{aligned}$	[Total Inertia] Represents the time in seconds, for a motor coupled to a load to accelerate from zero to base speed, at rated motor torque. The drive calculates Total Inertia during the autotune inertia procedure. Adjusting this parameter will cause the drive to calculate and change [Ki Speed Loop] and [Kp Speed Loop] gains.	Default: Min/Max Units:	$\begin{aligned} & \hline 0.10 \text { Secs } \\ & 0.01 / 600.00 \\ & 0.01 \text { Secs } \end{aligned}$	$\underline{053}$
\%		$\begin{aligned} & 451 \\ & F V \end{aligned}$	[Speed Loop Meter] Value of the speed regulator output. (1) "\%" if [Motor Cntl Sel] = "FVC Vector."	Default: Min/Max: Units:	Read Only $\text { -/+800.0\% }{ }^{(1)}$ $-1+800.0 \mathrm{~Hz}$ -/+800.0 RPM $0.1 \% / \mathrm{Hz} / \mathrm{RPM}$	$\underline{053}$ $\underline{121}$ $\underline{079}$

Dynamic Control File

으플	$\begin{aligned} & \text { 을 } \\ & \text { 웅 } \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
1 \mathbf{y} 0 0 0 0 2 2 0		$\begin{aligned} & \hline 140 \\ & 141 \end{aligned}$	[Accel Time 1] [Accel Time 2] Sets the rate of accel for all speed increases. $\frac{\text { Max Speed }}{\text { Accel Time }}=\text { Accel Rate }$	Default: 10.0 Secs 10.0 Secs Min/Max: $0.0 / 3600.0$ Secs Units: 0.1 Secs		$\frac{142}{143}$ $\frac{146}{361}$
		$\begin{aligned} & 142 \\ & 143 \end{aligned}$	[Decel Time 1] [Decel Time 2] Sets the rate of decel for all speed decreases. $\frac{\text { Max Speed }}{\text { Decel Time }}=\text { Decel Rate }$	Default: Min/Max: Units:	$\begin{aligned} & \text { 10.0 Secs } \\ & 10.0 \text { Secs } \\ & 0.0 / 3600.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	$\frac{140}{141}$ $\frac{146}{361}$
		146	[S Curve \%] Sets the percentage of accel or decel time that is applied to the ramp as S Curve. Time is added, $1 / 2$ at the beginning and $1 / 2$ at the end of the ramp.	Default: Min/Max: Units:	$\begin{aligned} & 0 \% \\ & 0 / 100 \% \\ & 1 \% \end{aligned}$	140 thru 143
		147	[Current Lmt Sel] Selects the source for the adjustment of current limit (i.e. parameter, analog input, etc.).	Default: Options:	0 "Cur Lim Val" 0 "Cur Lim Val" 1 "Analog In 1" 2 "Analog In 2"	$\frac{146}{149}$

읖	$\begin{aligned} & \text { 응 } \\ & \text { 웅 } \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
		148	[Current Lmt Val] Defines the current limit value when [Current Lmt Sel] = "Cur Lim Val." When in "Adj Voltage" mode, the output voltage will not be allowed to exceed this value.	Default: Min/Max: Units:	[Rated Amps] $\times 1.5$ (Equation yields approximate default value.) Based on Drive Rating 0.1 Amps	$\frac{147}{149}$
		149	[Current Lmt Gain] Sets the responsiveness of the current limit.	Default: Min/Max: Units:	$\begin{aligned} & 250 \\ & 0 / 5000 \\ & 1 \end{aligned}$	$\frac{147}{148}$
		150	[Drive OL Mode] Selects the drives response to increasing drive temperature and may reduce the current limit value as well as the PWM frequency. If the drive is being used with a sine wave filter, the filter is likely tuned to a specific carrier frequency. To ensure stable operation it is recommended to set this parameter to "Reduce CLim"	Default: Options:	3 "Both-PWM 1st" 0 "Disabled" 1 "Reduce CLim" 2 "Reduce PWM" 3 "Both-PWM 1st"	$\underline{219}$
		151	[PWM Frequency] Sets the carrier frequency for the PWM output. Drive derating may occur at higher carrier frequencies. For derating information, refer to the PowerFlex Reference Manual. Important: If parameter 053 [Motor Cntl\| Sell is set to "FVC Vector", the drive will run at 2 kHz when operating below 6 Hz .	Default: Min/Max: Units:	$\begin{aligned} & 4 \mathrm{kHz} \\ & 2 \mathrm{kHz} \\ & \text { (Frames } 4-6,600 / 690 \mathrm{VAC}) \\ & 2 / 10 \mathrm{kHz} \\ & 2 / 4 / 8 / 10 \mathrm{kHz} \end{aligned}$	
		152	[Droop RPM @ FLA] Selects amount of droop that the speed reference is reduced when at full load torque. Zero disables the droop function. Important: Selecting "Slip Comp" with parameter 080 in conjunction with parameter 152, may produce undesirable results.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \text { RPM } \\ & 0.0 / 200.0 \mathrm{RPM} \\ & 0.1 \text { RPM } \end{aligned}$	
		$\begin{aligned} & 153 \\ & F V \end{aligned}$	[Regen Power Limit] Sets the maximum power limit allowed to transfer from the motor to the DC bus. When using an external dynamic brake, set this parameter to its maximum value.	Default: Min/Max: Units:	$\begin{aligned} & -50.0 \% \\ & -800.0 / 0.0 \% \\ & 0.1 \% \end{aligned}$	053
		$\begin{aligned} & 154 \\ & F V \end{aligned}$	[Current Rate Limit] Sets the largest allowable rate of change for the current reference signal. This number is scaled in percent of maximum motor current every 250 microseconds.	Default: Min/Max: Units:	$\begin{aligned} & \text { 400.0\% } \\ & 1.0 / 800.0 \% \\ & 0.1 \% \end{aligned}$	053

읖		2	Parameter Name \& Description See page 3-2 for symbol descriptions	Values			\%
		$\begin{array}{\|c\|} \hline 161 \\ 162 \\ 0 \\ \hline \end{array}$	[Bus Reg Mode A] [Bus Reg Mode B] Sets the method and sequence of the DC bus regulator voltage. Choices are dynamic brake, frequency adjust or both. Sequence is determined by programming or digital input to the terminal block. Dynamic Brake Setup If a dynamic brake resistor is connected to the drive, both of these parameters must be set to either option 2,3 or 4 . Refer to the Attention statement on page P-4 for important information on bus regulation.	Default: 1 "Adjust Freq" 4 "Both-Frq 1st" Options: 0 "Disabled" 1 "Adjust Freq" 2 "Dynamic Brak" 3 "Both-DB 1st" 4 "Both-Frq 1st"			$\frac{160}{163}$1
			ATTENTION: The drive does not offer protection for externally mounted brake resistors. A risk of fire exists if external braking resistors are not protected. External resistor packages must be self-protected from over temperature or the protective circuit shown in Figure C. 1 on page $\mathrm{C}-3$ (or equivalent) must be supplied.				
		163					$\frac{161}{162}$
			[DB Resistor Type]	Default: 0 "None" Options: 0 "Internal Res" 1 "External Res" 2 "None"			
			Selects whether the internal or an external DB resistor will be used.				
			Important: In 0-3 Frame drives, only one DB resistor can be connected to the drive. Connecting both an internal \& external resistor could cause damage. If a dynamic brake resistor is connected to the drive, [Bus Reg Mode A \& B] must be set to either option 2, 3 or 4 .				
			ATTENTION: Equipment damage may result if a drive mounted (internal) resistor is installed and this parameter is set to "External Res" or "None." Thermal protection for the internal resistor will be disabled, resulting in possible device damage. Also see ATTENTION above.				
		164	[Bus Reg Kp] Proportional gain for the bus regulator. Used to adjust regulator response.	Default: 1500 Min/Max: $0 / 10000$ Units: 1			
		165	[Bus Reg Kd] Derivative gain for the bus regulator. Used to control regulator overshoot.	Default: 1000 Min/Max: $0 / 10000$ Units: 1			

	은	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
		$\begin{gathered} 179 \\ 0 \\ \hline \end{gathered}$	[Sleep-Wake Ref] Selects the source of the input controlling the Sleep-Wake function.	Default: Options:	2 "Analog $\ln 2 "$ 1 "Analog $\ln 1 "$ 2 "Analog $\ln 2 "$	
		180	[Wake Level] Defines the analog input level that will start the drive.	Default: Min/Max: Units:	$\begin{aligned} & 6.000 \mathrm{~mA}, 6.000 \text { Volts } \\ & \text { [Sleep Level]/20.000 mA } \\ & 10.000 \text { Volts } \\ & 0.001 \mathrm{~mA} \\ & 0.001 \text { Volts } \end{aligned}$	181
		181	[Wake Time] Defines the amount of time at or above [Wake Level] before a Start is issued.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \text { Secs } \\ & 0.0 / 1000.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	180
		182	[Sleep Level] Defines the analog input level that will stop the drive.	Default: Min/Max: Units:	$5.000 \mathrm{~mA}, 5.000$ Volts $4.000 \mathrm{~mA} /[$ Wake Level] 0.000 Volts/[Wake Level] 0.001 mA 0.001 Volts	183
		183	[Sleep Time] Defines the amount of time at or below [Sleep Level] before a Stop is issued.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \text { Secs } \\ & 0.0 / 1000.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	182
		177 O	[Gnd Warn Level] Sets the level at which a ground warning fault will occur. Configure with [Alarm Config 1].	Default: Min/Max: Units:	$\begin{aligned} & 3.0 \mathrm{Amps} \\ & \text { 1.0/5.0 Amps } \\ & 0.1 \mathrm{Amps} \end{aligned}$	$\underline{259}$
		184	[Power Loss Mode] Sets the reaction to a loss of input power. Power loss is recognized when: - DC bus voltage is $\leq 73 \%$ of [DC Bus Memory] and [Power Loss Mode] is set to "Coast". - DC bus voltage is $\leq 82 \%$ of [DC Bus Memory] and [Power Loss Mode] is set to "Decel".	Default: Options:	0 "Coast" 0 "Coast" 1 "Decel" 2 "Continue" 3 "Coast Input" 4 "Decel Input"	$\frac{013}{185}$
		185	[Power Loss Time] Sets the time that the drive will remain in power loss mode before a fault is issued.	Default: Min/Max: Units:	$\begin{aligned} & \hline 0.5 \text { Secs } \\ & 0.0 / 60.0 \text { Secs } \\ & 0.1 \text { Secs } \\ & \hline \end{aligned}$	184

Utility File

은		2	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
	6!luoo joy WIH	192	[Save HIM Ref] Enables HIM to control Speed Reference only or Reference, Start and Jog in Manual mode including two-wire control. Also enables a feature to save the present frequency reference value issued by the HIM to drive memory on power loss. Value is restored to the HIM on power up.			
$\begin{aligned} & \frac{3}{5} \\ & \frac{1}{5} \end{aligned}$		193	[Man Ref Preload] Enables/disables a feature to automatically load the present "Auto" frequency reference value into the HIM when "Manual" is selected. Allows smooth speed transition from "Auto" to "Manual."	Default: Options:	0 "Disabled" 0 "Disabled" 1 "Enabled"	
		194	[Save MOP Ref] Enables/disables the feature that saves the present MOP frequency reference at power down or at stop. Bit \# Factory Default Bit Values			
		195	[MOP Rate] Sets rate of change of the MOP reference in response to a digital input.	Default: Min/Max: Units:	$1.0 \mathrm{~Hz} / \mathrm{s}$ 30.0 RPM/s 0.2/[Maximum Freq] 6.0/[Maximum Freq] $0.1 \mathrm{~Hz} / \mathrm{s}$ 0.1 RPM/s	
		196	[Param Access Lvl] Selects the parameter display level. Basic $=$ Reduced param. set Advanced = Full param. set	Default: Options:	0 "Basic" 0 "Basic" 1 "Advanced" 2 "Reserved"	

읖	$\begin{aligned} & \text { 응 } \\ & \text { 웅 } \end{aligned}$	$\stackrel{1}{2}$	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		\% ¢ \% \% ¢
$\frac{\vdots}{\frac{z}{5}}$		213	[Speed Ref Source] Displays the source of the speed reference to the drive.	Default: Options	Read Only 0 "PI Output" 1 "Analog In 1" 2 "Analog In 2" $3-6$ "Reserved" 7 "Pulse In" 8 "Encoder" 9 "MOP Level" 10 "Jog Speed 1" 11-17 "Preset Spd1-7" 1822 "DPI Port 1-5" 23 "Reserved" 24 "Autotune" 25 "Jog Speed 2" $26-29$ "Scale Block 1-4" 30 "Pos/Spd Prof" 31 "Position Reg" 32 "Micro Pos" 33 "Homing" 34 "Decel Switcc" 35 "End Switch" 36 "Unipolar Lim" 37 "Rev Dis Lim" 38 "Max Spd Lim" 39 "Min Spd Lim" 40 "Rev Spd Lim" 41 "Load Trq Lim"	$\begin{aligned} & \frac{090}{\underline{093}} \\ & \hline 096 \\ & 101 \end{aligned}$
		214	[Start Inhibits] Displays the inputs currently preventing from starting.		Read Only 1 = Inhibit True $0=$ Inhibit False x=Reserved	
		215	[Last Stop Source] Displays the source that initiated the most recent stop sequence. It will be cleared (set to 0) during the next start sequence.	Default: Options	Read Only 0 "Pwr Removed" 1-5 "DPI Port 1-5" 6 "Reserved" 7 ""igital In" 8 ""autt" 9 ""Not Enabled" 10 "Sleep" 11 "Jog" 12 "Autotune" 13 "Precharge"	$\begin{aligned} & \begin{array}{l} \frac{361}{362} \\ 363 \\ \frac{363}{364} \\ \hline 365 \\ \hline 366 \end{array} \end{aligned}$

읖	$\begin{aligned} & \text { 을 } \\ & \frac{0}{0} \end{aligned}$	$\stackrel{1}{2}$	Parameter Name \& Description See page 3-2 for symbol descriptions Values	
		225	[Fault Amps] Default: Read Only Captures and displays motor amps at the Min $/$ Max: $0.0 /[$ Rated Amps] $\times 2$ time of the last fault. Units: 0.1 Amps	$\underline{224}$ thru $\underline{230}$
		226	[Fault Bus Volts] Default: Read Only Captures and displays the DC bus voltage of the drive at the time of the last Min/Max: Units: fault. 0.1 VDC	$\underline{224}$ thru $\underline{230}$
		227	[Status 1 @ Fault] Captures and displays [Drive Status 1] bit pattern at the time of the last fault.	$\begin{array}{r}\underline{209} \\ \underline{224} \\ \text { thru } \\ \underline{230} \\ \hline\end{array}$
		228	[Status 2 @ Fault] Captures and displays [Drive Status 2] bit pattern at the time of the last fault.	$\underline{210}$ $\underline{224}$ thru $\underline{230}$
		229	[Alarm 1 @ Fault] Captures and displays [Drive Alarm 1] at the time of the last fault.	$\underline{211}$ $\underline{224}$ thru $\underline{230}$

읖		2	Parameter Name \& Description See page 3-2 for symbol descriptions	Values	윷 \% \% ¢
$\begin{aligned} & \vec{E} \\ & \stackrel{\rightharpoonup}{E} \end{aligned}$		230	[Alarm 2 @ Fault] Captures and displays [Drive Alarm 2] at the time of the last fault.		212 224 hru 230
		$\begin{aligned} & 234 \\ & 236 \end{aligned}$	[Testpoint 1 Sel] [Testpoint 2 Sel] Selects the function whose value is displayed value in [Testpoint x Data]. These are internal values that are not accessible through parameters. See Testpoint Codes and Functions on page 4-16 for a listing of available codes and functions.	Default: 499 Min/Max: $0 / 65535$ Units: 1	
		$\begin{aligned} & 235 \\ & 237 \end{aligned}$	[Testpoint 1 Data] [Testpoint 2 Data] The present value of the function selected in [Testpoint x Sel].	Default: Read Only Min/Max: $-1+2147483648$ Units: 1	
	$\frac{\text { n }}{\frac{\text { T }}{\text { un }}}$	238	[Fault Config 1] Enables/disables annunciation of the listed faults.		
		240	[Fault Clear] Resets a fault and clears the fault queue	Default: 0 "Ready" Options: 0 "Ready" 1 "Clear Faults" 2 "Clr Flt Que"	

으플	$\begin{aligned} & \text { 을 } \\ & \text { 운 } \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
		$\begin{aligned} & 478 \\ & 484 \\ & 490 \\ & 496 \end{aligned}$	[Scale1 In Lo] [Scale2 In Lo] [Scale3 In Lo] [Scale4 In Lo] Scales the lower value of [ScaleX In Value].	Default: Min/Max Units:	$\begin{aligned} & \hline 0.0 \\ & -/+32767.000 \\ & 0.001 \end{aligned}$	
		$\begin{array}{\|l\|} \hline 479 \\ 485 \\ 491 \\ 497 \end{array}$	[Scale1 Out Hi] [Scale2 Out Hi] [Scale3 Out Hi] [Scale4 Out Hi] Scales the upper value of [ScaleX Out Value].	Default: Min/Max Units:	$\begin{aligned} & 0.0 \\ & -/+32767.000 \\ & 0.001 \end{aligned}$	
		$\begin{aligned} & 480 \\ & 486 \\ & 492 \\ & 498 \end{aligned}$	[Scale1 Out Lo] [Scale2 Out Lo] [Scale3 Out Lo] [Scale4 Out Lo] Scales the lower value of [ScaleX Out Value].	Default: Min/Max Units:	$\begin{aligned} & 0.0 \\ & -/+32767.000 \\ & 0.001 \end{aligned}$	
		$\begin{aligned} & 481 \\ & 487 \\ & 493 \\ & 499 \end{aligned}$	[Scale1 Out Value] [Scale2 Out Value] [Scale3 Out Value] [Scale4 Out Value] Value of the signal being sent out of the Universal Scale block. Typically this value is used as the source of information and will be linked to another parameter.	Default: Min/Max Units:	$\begin{aligned} & \text { Read Only } \\ & -/+32767.000 \\ & 0.001 \end{aligned}$	

Communication File

	을	란	Parameter Name \& Description See page 3-2 for symbol descriptions	Values	
	은OEE0	274	[DPI Port Sel] Selects which DPI port reference value will appear in [DPI Port Value].	 Default: "DPI Port 1" Options: $1-5$ "DPI Port 1-5"	
		275	[DPI Port Value] Value of the DPI reference selected in [DPI Port Sel].	Default: Read Only Min/Max: $-1+32767$ Units: 1	
		298	[DPI Ref Select] Scales DPI on maximum frequency or maximum speed.	Default: 0 "Max Freq" Options: 0 "Max Freq" 1 "Max Speed"	
		299	[DPI Fdbk Select] Selects DPI units displayed on the "Fdbk" line of the HIM. (1) Refer to Input/Output Definitions on page 3-54. (2) "Speed Fdbk" is a filtered value. Choose "25, SpdFb NoFilt" if your process requires speed feedback via a communication network.	Default: 17 "Speed Fdbk"(2) Options: 0 "Output Freq" 1 "Command Spd" 2 "Output Amps" 3 "Torque Amps" 4 "Flux Amps" 5 "Output Power" 6 "Output Volts" 7 "DC Bus Volts" 8 "PI Reference"(1) 9 "PI Feedback" 10 "PI Error" 11 "PI Output" 12 "\%Motor OL" 13 "\%Drive OL" 14 "CommandedTrq" 15 "MtrTrqCurRef"(1) 16 "Speed Ref" 17 "Speed Fdbk" (2) 18 "Pulse In Ref"(1) 19 "Reserved"" $20-23$ "Scale Block1-4(1) 24 "Param Cnt"" 25 "SpdFb NoFilt"	
		276	[Logic Mask] Determines which ports can control the div to " 1 ." If the bit for a port is set to " 0 ," the po for stop. Factory Default Bit Values	rive when [Write Mask Act], bit 15 is set ort will have no control functions except	$\begin{array}{\|l} \underline{288} \\ \text { thru } \\ \underline{297} \\ \hline \end{array}$
		277	[Start Mask] Controls which adapters can issue start commands.	See [Logic Mask].	$\begin{array}{\|l} \underline{288} \\ \text { thru } \\ \underline{297} \\ \hline \end{array}$

츺	은	안	Parameter Name \& Description See page 3-2 for symbol descriptions	Values	
∞ 0 1 0		278	[Jog Mask] Controls which adapters can issue jog commands.	See [Logic Mask].	$\underline{288}$ thru 297 1
		$\begin{gathered} 279 \\ 0 \end{gathered}$	[Direction Mask] Controls which adapters can issue forward/reverse direction commands.	See [Logic Mask].	$\begin{array}{\|l\|} \hline \frac{288}{\text { thru }} \\ 297 \\ \hline \end{array}$
		$\begin{gathered} 280 \\ 0 \end{gathered}$	[Reference Mask] Controls which adapters can select an alternate reference; [Speed Ref A, B Sel] or [Preset Speed 1-7].	See [Logic Mask].	$\begin{array}{\|l} 288 \\ \text { thru } \\ 297 \\ \hline \end{array}$
		$\begin{gathered} 281 \\ 0 \end{gathered}$	[Accel Mask] Controls which adapters can select [Accel Time 1, 2].	See [Logic Mask].	$\begin{array}{\|l} \hline 288 \\ \text { thru } \\ 297 \\ \hline \end{array}$
		$\begin{gathered} 282 \\ 0 \end{gathered}$	[Decel Mask] Controls which adapters can select [Decel Time 1, 2].	See [Logic Mask].	$\begin{aligned} & \underline{288} \\ & \text { thru } \\ & 297 \\ & \hline \end{aligned}$
		$\begin{gathered} 283 \\ 0 \end{gathered}$	[Fault Clr Mask] Controls which adapters can clear a fault.	See [Logic Mask].	$\begin{array}{\|l\|l\|} \hline 288 \\ \text { thru } \\ 297 \end{array}$
		284	[MOP Mask] Controls which adapters can issue MOP commands to the drive.	See [Logic Mask].	$\begin{aligned} & \underline{288} \\ & \text { thru } \\ & \underline{297} \\ & \hline \end{aligned}$
		$\begin{gathered} 285 \\ 0 \end{gathered}$	[Local Mask] Controls which adapters are allowed to take exclusive control of drive logic commands (except stop). Exclusive "local" control can only be taken while the drive is stopped.	See [Logic Mask].	$\begin{array}{\|l} \hline 288 \\ \text { thru } \\ 297 \\ \hline \end{array}$
		288	[Stop Owner] Adapters that are presently issuing a valid command. Bit \#	Read Only stop	$\begin{aligned} & \underline{276} \\ & \text { thru } \\ & \underline{285} \\ & \hline \end{aligned}$
		289	[Start Owner] Adapters that are presently issuing a valid start command.	See [Stop Owner].	276 thru 885
		290	[Jog Owner] Adapters that are presently issuing a valid jog command.	See [Stop Owner].	$\underline{276}$ thru $\mathbf{2 8 5}$

| | | | |
| :--- | :--- | :--- | :--- | :--- |

읖	을	2	$\begin{array}{l}\text { Parameter Name \& Description } \\ \text { See page 3-2 for symbol descriptions }\end{array}$ Values	
08	극	$\begin{gathered} 276 \\ 0 \end{gathered}$	[Logic Mask] Determines which ports can control the drive. If the bit for a port is set to " 0 ," the port will have no control functions except for stop. Factory Default Bit Values	$\underline{288}$ thru $\underline{297}$
		598	[Logic Mask Act] Read Only Indicates status of the logic mask for DPI ports. When bit 15 is set, network security is controlling the logic mask instead of [Logic Mask]. Factory Default Bit Values	276

Inputs \& Outputs File

읖	$\begin{aligned} & \text { 을 } \\ & \text { oㄴ } \end{aligned}$	눈	Parameter Name \& Description See page 3-2 for symbol descriptions Values	[
¢	을믇은$\frac{0}{c}$$\frac{c}{4}$	320	[Anlg In Config] Selects the mode for the analog inputs. Factory Default Bit Values	$\begin{aligned} & \frac{322}{325} \\ & \frac{323}{326} \\ & \hline \end{aligned}$
\% 0 5 2 2		321	[Anlg In Sqr Root] Enables/disables the square root function for each input. Factory Default Bit Values	

츺		2		Parameter Name \＆Description See page 3－2 for symbol descriptions	Values			（
$\begin{aligned} & \text { 号 } \\ & \text { 言 } \\ & \underline{\underline{c}} \\ & \frac{0}{0} \\ & \frac{\pi}{4} \end{aligned}$		$\begin{aligned} & 322 \\ & 325 \end{aligned}$		［Analog In 1 Hi$]$ Analog In 2 Hi ］ Sets the highest input value to the analog input x scaling block． Anlg In Config］，parameter 320 defines if this input will be -+10 V or $0-20 \mathrm{~mA}$ ．	Default： Min／Max： Units：		0 Volt 0 Volt 20.000 mA .000 V 10.000 V mA Volt	$\underline{091}$
		$\begin{aligned} & 323 \\ & 326 \\ & \hline \end{aligned}$		［Analog In 1 Lo］ Analog In 2 Lo］ Sets the lowest input value to the analog input x scaling block． Anlg In Config］，parameter 320 defines if his input will be $-/+10 \mathrm{~V}$ or $0-20 \mathrm{~mA}$ ． f set below 4 mA ，［Analog $\ln \mathrm{x}$ Loss］ should be＂Disabled．＂	Default： Min／Max： Units：		Volt Volt 20.000 mA ．000V ／10．000V mA Volt	091
		$\begin{array}{\|l\|} \hline 324 \\ 327 \end{array}$		Analog In 1 Loss］ Analog In 2 Loss］ Selects drive action when an analog signal loss is detected．Signal loss is defined as an analog signal less than 1V or 2 mA ．The signal loss event ends and normal operation resumes when the input signal level is greater than or equal to 1.5 V or 3 mA ．	Default： Options：	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	＂Disabled＂ ＂Disabled＂ ＂Disabled＂ ＂Fault＂ ＂Hold Input＂ ＂Set Input Lo＂ ＂Set Input Hi＂ ＂Goto Preset1＂ ＂Hold OutFreq＂	$\underline{091}$
旁	$\begin{aligned} & \frac{0}{3} \\ & \frac{2}{3} \\ & \mathbf{O} \\ & \frac{0}{0} \\ & \frac{0}{5} \end{aligned}$	340	［Anlg Out Config］ Selects the mode for the analog outputs．．					
		341	［Anlg Out Absolut］ Selects whether the signed value or absolute value of a parameter is used before being scaled to drive the analog output． Bit \＃					

	$\begin{aligned} & \text { 을 } \\ & \text { Ò } \end{aligned}$	2	Parameter Name \& Description See page 3-2 for symbol descriptions			Values		[
		$\begin{aligned} & 342 \\ & 345 \end{aligned}$	[Ana [Ana Selec drives	og Out1 Sel] og Out2 Sel] ts the source of th the analog outpu ns "Output Freq" "Command Spd" "Output Amps" "Torque Amps" "Flux Amps" "Output Power" "Output Volts" "DC Bus Volts" "PI Reference" ${ }^{(1)}$ "PI Feedback" "PI Error" "PI Output" "\%Motor OL" "\%Drive OL" "CommandedTrq" "MtrTrqCurRef" ${ }^{(1)}$ "Speed Ref" "Speed Fdbk" "Pulse In Ref"(1) "Torque Est" (1) "Scale Block1-4"(1) "Param Cnt" (1) "SpdFb NoFilt Refer to Option Defin	e value that itions on page 3-54.	Default: 0"Outp Options: See Ta Value	put Freq" Table [Analog Out1 Hi] Value + [Maximum Speed] + [Maximum Speed] 200\% Rated 200\% Rated 200\% Rated 200\% Rated 120\% Rated Input Volts 200\% Rated Input Volts 100\% 100\% 100\% 100\% 100\% 100\% 800\% Rated 200\% Rated +[Maximum Speed] + [Maximum Speed] + [Maximum Speed] $+800 \%$	$\frac{001}{002}$ $\frac{003}{004}$ $\frac{005}{007}$ $\frac{006}{012}$ $\frac{135}{136}$ $\frac{137}{138}$ $\frac{138}{220}$ $\frac{219}{}$
		$\begin{array}{\|l\|} \hline 343 \\ 346 \\ \hline \end{array}$	[Ana [Ana Sets sourc	og Out1 Hi] og Out2 Hi] he analog output value is at maxi	value when the mum.	Default: 20.000 Min/Max: 0.000 $-/+10$ Units: 0.001 0.001	$0 \mathrm{~mA}, 10.000$ Volts 20.000 mA .000V mA Volt	$\frac{340}{342}$
		$\begin{aligned} & 344 \\ & 347 \end{aligned}$	$\begin{aligned} & {[\text { Ane }} \\ & \text { [Ane } \\ & \text { Sets } \\ & \text { sourc } \end{aligned}$	og Out1 Lo] og Out2 Lo] he analog output value is at minim	alue when the um.	Default: 0.000 Min/Max: $0.000 /$ $-/+10$ Units: 0.001 0.001	mA, 0.000 Volts 20.000 mA .000V mA Volt	$\frac{340}{342}$
		$\begin{aligned} & 354 \\ & 355 \end{aligned}$	$\left[\begin{array}{l} {[\text { Anl }} \\ \text { [Anl } \\ \text { Sets } \\ \text { analc } \\ \text { this s } \\ \text { Exan } \\ \text { "Con } \\ 150^{\circ} \\ \hline \end{array}\right.$	Out1 Scale] Out2 Scale] he high value fo g out scale. Ente cale and max sc ple: If [Analog O manded Trq," a valu scale in place of	he range of ng 0.0 will disable will be used. Sel] = ue of $150=$ he default 800%.	Default: 0.0 Min/Max: [Anal Units: 0.01	Out1 Sel]	

$\stackrel{\text { O}}{i \underline{1}}$		<	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
INPUTS \& OUTPUTS		$\begin{array}{\|l\|} \hline 377 \\ 378 \end{array}$	[Anlg1 Out Setpt] [Anlg2 Out Setpt] Sets the analog output value from a communication device. Example: Set [Data In Ax] to "377" (value from communication device). Then set [Analog Outx Sel] to "Param Cnt.".	Default: Min/Max: Units:	$\begin{aligned} & 20.000 \mathrm{~mA}, 10.000 \text { Volts } \\ & 0.000 / 20.000 \mathrm{~mA} \\ & -1+10.000 \mathrm{~V} \\ & 0.001 \mathrm{~mA} \\ & 0.001 \text { Volt } \end{aligned}$	

Selected Option Definitions - [Analog Outx Sel], [Digital Inx Sel], [Digital Outx Sel]

Option	Description	Related
At Speed	Relay changes state when drive has reached commanded speed.	380
Fast Stop	When closed, the drive will stop with a 0.1 second decel time. (If Torque Proving is being used, float will be ignored at end of ramp and the mechanical brake will be set).	361
Excl Link	Links digital input to a digital output if the output is set to "Input 1-6 Link." This does not need to be selected in the Vector option.	361
Find Home	Starts the commissioning procedure when a start command is issued to automatically position the motor to a home position established by a limit switch.	
Hold Step	Inhibits profile from transitioning to next step when active.	
Home Limit	This input is used for the "home" position.	
Input 1-6 Link	When Digital Output 1 is set to one of these (i.e. Input 3 Link) in conjunction with Digital Input 3 set to "Excl Link," the Digital Input 3 state (on/off) is echoed in the Digital Output 1.	$\underline{380}$
Micro Pos	Micropostion input. When closed, the command frequency is set to a percentage speed reference as defined in [MicroPos Scale\%], parameter 611.	361
MOP Dec	Decrements speed reference as long as input is closed.	361
MOP Inc	Increments speed reference as long as input is closed.	361
MtrTrqCurRef	Torque producing current reference.	342
Param Cntl	Parameter controlled analog output allows PLC to control analog outputs through data links. Set in [AnlgX Out Setpt], parameters 377-378.	342
Param Cntl	Parameter controlled digital output allows PLC to control digital outputs through data links. Set in [Dig Out Setpt], parameter 379.	380
PI Reference	Reference for PI block (see Process PID on page C-28).	342
Pos Redefine	Redefines the "home" position for the drive by latching encoder position.	
Pos Sel 1-5	The binary value of these inputs is used to select the starting step number for the profile.	
Precharge En	Forces drive into precharge state. Typically controlled by auxiliary contact on the disconnect at the $D C$ input to the drive.	361
Profile Input	Must be chosen if [Step X Type] is set to "Dig Input" and the digital input value that is entered in [Step X Value] is the value of this digital input selector.	
Pulse In Ref	Reference of the pulse input (Z channel of encoder - can be used while A \& B channels are encoder inputs).	342
RunFwd Level RunRev Level Run Level	Provides a run level input. They do not require a transition for enable or fault, but a transition is still required for a stop.	
Run w/Comm	Allows the comms start bit to operate like a run with the run input on the terminal block. Ownership rules apply.	
Scale Block 1-4	Output of scale blocks, parameters 354-355.	342
Torque Est	Calculated percentage of rated motor torque.	342
Torque Setpt 1	Selects "Torque Stpt1" for [Torque Ref A Sel] when set, otherwise uses value selected in [Torque Ref A Sel].	361
Vel Override	When active, multiplies value of [Step X Velocity] by \% value in [Vel Override].	

	$\begin{aligned} & \text { 을 } \\ & \text { 인 } \end{aligned}$	울	$\begin{array}{l}\text { Parameter Name \& Description } \\ \text { See page 3-2 for symbol descriptions }\end{array}$ Values	(1)
			${ }^{(10)}$ A dedicated hardware enable input is available via a jumper selection. Refer to page 1-18 for further information. (11) Only available when "Torque Proving" function is selected. (12) Refer to Option Definitions on page 3-54. (13) Refer to [Dyn UsrSet Sel] on page 3-36 for selection information.	
		379	[Dig Out Setpt] Sets the digital output value from a communication device. Example Set [Data In B1] to "379." The first three bits of this value will determine the setting of [Digital Outx Sel] which should be set to "30, Param Cntl." Bit \#	380

읖	은	i	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
		$\begin{aligned} & 380 \\ & 384 \\ & 388 \end{aligned}$	[Digital Out1 Sel] ${ }^{(4)}$ [Digital Out2 Sel] [Digital Out3 Sel]	Default:	1 "Fault" 4 "Run" 4 "Run"	381 385 389
			Selects the drive status that will energize a (CRx) output relay. ${ }^{(1)}$ Any relay programmed as Fault or Alarm will energize (pick up) when power is applied to drive and deenergize (drop out) when a fault or alarm exists. Relays selected for other functions will energize only when that condition exists and will deenergize when condition is removed. Refer to pages 1-17. (2) Refer to Option Definitions on page 3-54. ${ }^{(3)}$ Activation level is defined in [Dig Outx Level] below. (4) When [TorqProve Cnfg] is set to "Enable," [Digital Out1 Sel] becomes the brake control and any other selection will be ignored.	Options:		$\begin{array}{r}382 \\ \hline 386 \\ \hline 390 \\ \hline 383 \\ \hline\end{array}$
		$\begin{aligned} & 381 \\ & 385 \\ & 389 \end{aligned}$	[Dig Out1 Level] [Dig Out2 Level] [Dig Out3 Level] Sets the relay activation level for options $10-15$ in [Digital Outx Sel]. Units are assumed to match the above selection (i.e. "At Freq" = Hz, "At Torque" = Amps).	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \\ & 0.0 \\ & 0.0 / 819.2 \\ & 0.1 \end{aligned}$	380
		$\begin{aligned} & 382 \\ & 386 \\ & 390 \end{aligned}$	[Dig Out1 OnTime] [Dig Out2 OnTime] [Dig Out3 OnTime] Sets the "ON Delay" time for the digital outputs. This is the time between the occurrence of a condition and activation of the relay.	Default: Min/Max: Units:	0.00 Secs 0.00 Secs $0.00 / 600.00$ Secs 0.01 Secs	380

Applications File

읖	$\begin{aligned} & \text { 을 } \\ & \hline \frac{1}{0} \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
	601		[TorqProve Setup] Allows control of specific torque proving functions through a communication device. Factory Default Bit Values			
	을인는믄	602	[Spd Dev Band] Defines the allowable difference between the commanded frequency and encoder feedback value. A fault will occur when the difference exceeds this value for a period of time.	Default: Min/Max Units:	$\begin{aligned} & 2.0 \mathrm{~Hz} \\ & 60.0 \mathrm{RPM} \\ & 0.1 / 15.0 \mathrm{~Hz} \\ & 3.0 / 450.0 \mathrm{RPM} \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \mathrm{RPM} \end{aligned}$	603
		603	[SpdBand Integrat] Sets the amount of time before a fault is issued when [Spd Dev Band] is outside its threshold.	Default: Min/Max Units:	$\begin{aligned} & 60 \mathrm{mSec} \\ & 1 / 200 \mathrm{mSec} \\ & 1 \mathrm{mSec} \end{aligned}$	602
		604	[Brk Release Time] Sets the time between the brake release command and when the drive begins to accelerate. In Encoderless mode, this parameter sets the time to release the brake after drive starts.	Default: Min/Max Units:	$\begin{aligned} & \text { 0.10 Secs } \\ & 0.00 / 10.00 \text { Secs } \\ & 0.01 \text { Secs } \end{aligned}$	
		605	[ZeroSpdFIoatTime] Sets the amount of time the drive is below [Float Tolerance] before the brake is set. Not used in Encoderless TorgProve mode.	Default: Min/Max Units:	$\begin{aligned} & 5.0 \text { Secs } \\ & 0.1 / 500.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	
		606	[Float Tolerance] Sets the frequency level where the float timer starts. Also sets the frequency level where the brake will be closed in Encoderless TorqProve mode.	Default: Min/Max Units:	$\begin{aligned} & 0.2 \mathrm{~Hz} \\ & 6.0 \mathrm{RPM} \\ & 0.1 / 5.0 \mathrm{~Hz} \\ & 3.0 / 150.0 \mathrm{RPM} \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \mathrm{RPM} \end{aligned}$	
		607	[Brk Set Time] Defines the amount of delay time between commanding the brake to be set and the start of brake proving.	Default: Min/Max Units:	$\begin{aligned} & \text { 0.10 Secs } \\ & 0.00 / 10.00 \text { Secs } \\ & 0.01 \text { Secs } \end{aligned}$	
		608	[TorqLim SlewRate] Sets the rate to ramp the torque limits to zero during brake proving.	Default: Min/Max Units:	$\begin{aligned} & 10.0 \text { Secs } \\ & 0.5 / 300.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	
		609	[BrkSlip Count] Sets the number of encoder counts to define a brake slippage condition.	Default: Min/Max Units:	250 0/65535 1	

읖	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	2	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
	을인은은	610	[Brk Alarm Travel] Sets the number of motor shaft revolutions allowed during the brake slippage test. Drive torque is reduced to check for brake slippage. When slippage occurs, the drive allows this number of motor shaft revolutions before regaining control. Not used in Encoderless TorgProve mode.	Default: 1.0 Revs Min/Max: $0.0 / 1000.0$ Revs Units: 0.1 Revs		
		611	[MicroPos Scale\%] Sets the percent of speed reference to be used when micropositioning has been selected in [TorqProve Cnfg]. Bit 2 of [TorqProve Cnfg], parameter 600 determines if the motor needs to come to a stop before this setting will take effect.	Default: 10.0% Min/Max: $0.1 / 100.0 \%$ Units: 0.1%		$\begin{aligned} & \begin{array}{l} 361 \\ \text { thru } \\ 366 \\ \hline 600 \\ \hline \end{array} \\ & \hline \end{aligned}$
		612	[Torq Prove Sts] Displays the status bits for TorqProve.			
		631	[Rod Load Torque] Displays the load side torque.	Default: Read Only Min/Max: $0.00 / 32000.00$ FtLb Units: 0.01 FtLb		
		632	[TorqAlarm Level] Sets the level at which the Torque Alarm becomes active.	Default: 0.00 FtLb Min/Max: $0.00 / 5000.00$ FtLb Units: 0.01 FtLb		
	을	633	[TorqAlarm Action] Sets the drive action when the Torque Alarm is exceeded.	Default: 0 "No Action" Options: 0 "No Action" 1 "Goto Preset1"		
	$\begin{aligned} & \overline{\overline{0}} \\ & \overline{\mathbf{0}} \\ & \overline{\overline{0}} \end{aligned}$	634	[TorqAlarm Dwell] Sets the time that the torque must exceed [TorqAlarm Level] before [TorqAlarm Action] takes place.	Default: 0.0 Secs Min/Max: $0.0 / 60.0$ Secs Units: 0.1 Secs		
		635	[TorqAIrm Timeout] Sets the amount of time a Torque Alarm can be active until timeout action begins.	Default: 0.0 Secs Min/Max: $0.0 / 600.0$ Secs Units: 0.1 Secs		
		636	[TorqAIrm TO Act] Sets the drive action when [TorqAlrm Timeout] is exceeded.	Default: Options	0 0 0 1 1 "Resume" "Rault Drive"	

	$\begin{aligned} & \text { 을 } \\ & \text { 웅 } \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		\% $\mathbf{0}$ $\frac{0}{0}$ ¢
	$\begin{aligned} & \text { 을 } \\ & \underline{\underline{3}} \\ & \overline{\mathbf{0}} \\ & \overline{\mathbf{0}} \end{aligned}$	$\begin{gathered} 637 \\ 0 \end{gathered}$	[PCP Pump Sheave] Specifies the pump sheave diameter.	Default: Min/Max Units:	$\begin{aligned} & \text { 20.00 Inch } \\ & 0.25 / 200.00 \text { Inch } \\ & 0.01 \text { Inch } \end{aligned}$	
		$\begin{gathered} 638 \\ 0 \end{gathered}$	[Max Rod Torque] Sets the desired maximum torque on the polished rod in a PCP oil well application	Default: Min/Max Units:	$\begin{aligned} & 500.0 \text { FtLb } \\ & 0.0 / 3000.0 \text { FtLb } \\ & 0.1 \text { FtLb } \end{aligned}$	
		639	[Min Rod Speed] Sets the minimum speed for the polished rod in a PCP oil well application.	Default: Min/Max Units:	$\begin{aligned} & 0.0 \mathrm{RPM} \\ & 0.0 / 199.0 \mathrm{RPM} \\ & 0.1 \mathrm{RPM} \end{aligned}$	$\frac{081}{646}$
		640 0	[Max Rod Speed] Sets the maximum speed for the polished rod in a PCP oil well application.	Default: Min/Max Units:	$\begin{aligned} & 300.0 \text { RPM } \\ & \text { 200.0/600.0 RPM } \\ & 0.1 \text { RPM } \end{aligned}$	$\begin{aligned} & \frac{082}{646} \\ & \hline \end{aligned}$
		641 0	[OilWell Pump Sel] Selects the type of oil well application. "Disable" (0) - Disables oil well parameters. "Pump Jack" (1) - Sets parameters based on Pump Jack type oil well. "PC Oil Well" (2) - Sets parameters based on Progressive Cavity type Pumps.	Default: Options:	0 "Disable" 0 "Disable" 1 "Pump Jack" 2 "PC Oil Well"	
		642	[Gearbox Rating] Sets the gearbox rating.	Default: Min/Max Units:	$\begin{aligned} & \hline 640.0 \text { Kin\# } \\ & \text { 16.0/2560.0 Kin\# } \\ & 0.1 \text { Kin\# } \end{aligned}$	
		643 0	[Gearbox Sheave] Sets the Sheave diameter on the Gearbox.	Default: Min/Max Units:	$\begin{aligned} & 0.25 \text { Inch } \\ & 0.25 / 100.00 \text { Inch } \\ & 0.01 \text { Inch } \end{aligned}$	
		644 0	[Gearbox Ratio] Specifies the nameplate gear ratio.	Default: Min/Max Units:	$\begin{aligned} & 1.00 \\ & 1.00 / 40.00 \\ & 0.01 \end{aligned}$	
		645 (O)	[Motor Sheave] Sets the sheave diameter on the motor.	Default: Min/Max Units:	$\begin{aligned} & 10.00 \text { Inch } \\ & 0.25 / 25.00 \text { Inch } \\ & 0.01 \text { Inch } \end{aligned}$	
		646 0	[Total Gear Ratio] Displays the calculated total gear ratio as follows: $\frac{\text { [Gearbox Sheave] } \mathrm{x} \text { [Gearbox Ratio] }}{[\text { Motor Sheave }]}$	Default: Min/Max Units:	$\begin{aligned} & \text { Read Only } \\ & 0.00 / 32000.00 \\ & 0.01 \end{aligned}$	
		$\begin{gathered} 647 \\ 0 \end{gathered}$	[DB Resistor] Calculates the negative torque maximum available from the dynamic brake resistor.	Default: Min/Max Units:	$\begin{aligned} & \text { 10.4 Ohms } \\ & \text { 0.0/100.0 Ohms } \\ & \text { 0.1 Ohms } \\ & \hline \end{aligned}$	
		648	[Gearbox Limit] Sets the gearbox torque limit. This value is used in determining the [Pos Torque Limit] \& [Neg Torque Limit].	Default: Min/Max Units:	$\begin{aligned} & 100.0 \% \\ & 0.0 / 200.0 \% \\ & 0.1 \% \end{aligned}$	

읖	$\begin{aligned} & \text { 을 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		(\%
		$\begin{gathered} 650 \\ 0 \end{gathered}$	[Adj Volt Phase] "1 Phase" (0) - Select to operate single phase loads connected to the $U \& V$ phases. Not designed to operate single phase motors. "3 Phase" (1) - Select to operate three phase loads.	Default: Options:	1 "3 Phase" 0 " 1 Phase" 1 " 3 Phase"	
		651	[Adj Volt Select] Selects the source of the voltage reference to the drive.	Default: Options:	2 "Analog $\ln 2 "$ 0 "Reserved" 1 "Analog $\ln 1 "$ 2 "Analog $\operatorname{In} 2 "$ $3-6$ "Reserved" $7-8$ "Not Used 9 "MOP Level" 10 "Reserved" $11-17$ "Preset Volt1-7" $18-22$ "DPI Port 1-5"	
		652 0	[Adj Volt Ref Hi] Scales the upper value of the [Adj Volt Select] selection when the source is an analog input.	Default: Min/Max: Units:	$\begin{aligned} & 100.0 \% \\ & -/+100.0 \% \text { of Drive Rated } \\ & \text { Volts } \\ & 0.1 \% \end{aligned}$	
		653	[Adj Volt Ref Lo] Scales the lower value of the [Adj Volt Select] selection when the source is an analog input.	Default: Min/Max: Units:	0.0\% $-1+100.0 \%$ of Drive Rated Volts 0.1%	
		654 655 656 657 658 659 660	[Adj Volt Preset 1] [Adj Volt Preset 2] [Adj Volt Preset 3] [Adj Volt Preset 4] [Adj Volt Preset 5] [Adj Volt Preset 6] [Adj Volt Preset 7] Provides an internal fixed voltage command value that is available as a selection for [Adj Volt Select].		$\begin{aligned} & \text { 0.0 VAC } \\ & \text { 0.0/Drive Rated Volts } \\ & 0.1 \text { VAC } \end{aligned}$	
		661	[Min Adj Voltage] Sets the low limit for the voltage reference when [Motor Cntrl Sel] is set to "Adj Voltage."		$\begin{aligned} & \text { 0.0 VAC } \\ & \text { 0.0/Drive Rated Volts } \\ & 0.1 \text { VAC } \end{aligned}$	
		662	[Adj Volt Command] Displays the voltage value of the reference specified in [Adj Volt Select].		$\begin{aligned} & \text { Read Only } \\ & \text { 0.0/Drive Rated Volts } \\ & 0.1 \text { VAC } \end{aligned}$	
		663	[MOP Adj VoltRate] Sets the rate for the MOP.		$\begin{aligned} & 1.0 \mathrm{~V} / \mathrm{s} \\ & 0.1 / 100.0 \mathrm{~V} / \mathrm{s} \\ & 0.1 \mathrm{~V} / \mathrm{s} \\ & \hline \end{aligned}$	

읖	$\begin{array}{r} \text { 을 } \\ \text { 운 } \end{array}$	$\stackrel{\text { ® }}{ }$	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		[
		$\begin{gathered} 669 \\ 0 \end{gathered}$	[Adj Volt TrimSel] Selects the source of the voltage trim that is added to or subtracted from the voltage reference.	Default: Options:	2 "Analog $\ln 2 "$ 0 "Reserved" 1 "Analog In 1" 2 "Analog In 2" 3-6 "Reserved" 7-8 "Not Used 9 "MOP Level" 10 "Reserved" 11-17 "Preset Volt1-7" 18-22 "DPI Port 1-5" 24 "Output Power" 25 "Out Current"	
		$\begin{gathered} 670 \\ 0 \end{gathered}$	[Adj Volt Trim Hi] Scales the upper value of the [Adj Volt TrimSel] selection when the source is an analog input.	Default: Min/Max: Units:	100.0% 0.0/100.0\% of Drive Rated Volts 0.1%	
		$\begin{gathered} 671 \\ 0 \end{gathered}$	[Adj Volt Trim Lo] Scales the lower value of the [Adj Volt TrimSel] selection when the source is an analog input.	Default: Min/Max: Units:	0.0% 0.0/100.0\% of Drive Rated Volts 0.1%	
		672	[Adj Volt Trim \%] Scales the total voltage trim value from all sources. Analog In $1 \& 2$ are scaled separately with [Adj Volt Trim Hi] \& [Adj Volt Trim Lo] then [Adj Volt Trim \%] sets the trim value. The sign of this value will determine if trim is added or subtracted from the reference.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \% \\ & -/+100.0 \% \text { of Drive Rated } \\ & \text { Volts } \\ & 0.1 \% \end{aligned}$	
		675	[Adj Volt AccTime] Sets the rate of voltage increase. The value will be the time it takes to ramp the voltage from [Min Adj Voltage] to [Maximum Voltage]. An " S " curve can be applied to the ramp using [Adj Volt Scurve].	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \text { Secs } \\ & 0.0 / 3600.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	
		676	[Adj Volt DecTime] Sets the rate of voltage decrease. The value will be the time it takes to ramp the voltage from [Maximum Voltage] to [Min Adj Voltage]. An "S" curve can be applied to the ramp using [Adj Volt Scurve]. Important: This ramp and [Decel Time 1/ 2] (parameters $142 / 143$) must ramp to zero for drive to Stop.	Min/Max: Units:	$\begin{aligned} & 0.0 \text { Secs } \\ & 0.0 / 3600.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	
		677	[Adj Volt S Curve] Sets the percentage of accel or decel time to be applied to the voltage ramp as " S " curve. Time is added $1 / 2$ at the beginning and $1 / 2$ at the end.	Default: Min/Max: Units:	$\begin{aligned} & 0.0 \% \\ & 0.0 / 100.0 \% \\ & 0.1 \% \end{aligned}$	

읖	O	2	Parameter Name \& Description See page 3-2 for symbol descriptions	Values	(\%
		680 681 682 683 684 685 686 687	[Sweep Auto Tune] [Sweep Volt Min] [Sweep Volt Max] [Sweep Freq Min] [Sweep Freq Max] [Sweep Freq Detec] [Sweep Time] [Ampl Detect Sel] These parameters are not functional at this time.		

Pos/Spd Profile File

읖	$\begin{aligned} & \text { 을 } \\ & \text { 웅 } \end{aligned}$	울	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
		700	[Pos/Spd Prof Sts] Provides status of the profile/indexer. Bit binary value. Bit \#	0-4 are a$\qquad$$\qquad$$\qquad$$\qquad$1 0 1 1 1 1 0 0 $\begin{array}{llllll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0\end{array}$	Read Only	
		701	[Units Traveled] Number of units traveled from the home position.	Default: Min/Max: Units:	$\begin{aligned} & \text { Read Only } \\ & -/+21474836.47 \\ & 0.01 \end{aligned}$	

은	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		[
		705	[Pos/Spd Prof Cmd] Control word for the profile/indexer. The control functions are the same as those in the digital input section. If a digital input is configured to provide the starting step (bits 0-4), then its starting step value takes priority over [Profile Command]. If a digital input is configured for any of bits 8 -12, the corresponding functions will respond to the digital input status or the status of [Profile Command].			
		707	[Encoder Pos Tol] Sets the "At Position" tolerance window (see [Profile Status], bit 12) around the encoder count. The value is subtracted from and added to the encoder unit value. It is applied to all steps using encoder units.	Default: Min/Max: Units:	10 $1 / 50000$ 1	
		708	[Counts per Unit] Sets the number of encoder counts equal to one unit. A 1024 PPR quadrature encoder has 4096 pulses (counts) in one revolution.	Default: Min/Max: Units:	$\begin{aligned} & 4096 \\ & 1 / 1000000 \\ & 1 \end{aligned}$	
		711 0	[Vel Override] This value is a multiplier to the [Step x Velocity] value when "Vel Override" bit of [Profile Command] is set to " 1 ". This is applicable to all step types.		$\begin{aligned} & 100.0 \% \\ & 10.0 / 150.0 \% \\ & 0.1 \% \end{aligned}$	
			[Find Home Speed] Sets the speed and direction that are active when "Find Home" of [Profile Command] is active. The sign of the value defines direction ("+" = Forward, "-" = Reverse).	Default: Min/Max: Units:	```+10.0% of [Maximum Speed] -/+50.0% of [Maximum Speed] 0.1 Hz 0.1 RPM```	
			[Find Home Ramp] Sets the rate of acceleration and deceleration of the Find Home moves.	Default: Min/Max: Units:	$\begin{aligned} & \text { 10.0 Secs } \\ & 0.0 / 3600.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	
		718	[Pos Reg Filter] Sets the error signal filter in the position regulator.	Default: Min/Max: Units:	$\begin{aligned} & 25.0 \\ & 0.0 / 500.0 \\ & 0.1 \end{aligned}$	
		719	[Pos Reg Gain] Sets the gain adjustment for the position regulator.		$\begin{aligned} & 4.0 \\ & 0.0 / 200.0 \\ & 0.1 \end{aligned}$	

읖	$\begin{aligned} & \text { 을 } \\ & \text { 응 } \end{aligned}$	\%	Parameter Name \& Description See page 3-2 for symbol descriptions Values	(
		720 730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 0		
			The following step types use the velocity regulator only: "End" (0) - drive ramps to zero speed and stops the profile after the programmed dwell time. "Time" (1) - drive ramps to [Step x Velocity], holds speed and decels to zero in specified [Step x Value] time. "Time Blend" (2) - drive ramps to [Step x Velocity], and holds speed until [Step x Value] time completes, then transitions to step defined in [Step x Next]. "Dig Input" (3) - drive ramps to [Step x Velocity], holds speed until input specified in [Step x Value] transitions in the direction defined by sign of [Step x Value]. "EncIncrBlend" (5) - drive ramps to [Step x Velocity], holds speed, when at encoder position defined by [Step x Value] within tolerance window transition to [Step x Next]. "Param Level" (8) - drive ramps to [Step x Velocity], holds speed, and compares [Step x Value] to [Step x Dwell]. The sign of [Step x Value] ("+"= $>$, "-" = <) determines when to transition [Step x Next] and compares [Step x Dwell] to the value specified by the parameter number in [Step x Value]. The following step types use the point-to-point position regulator: "Encoder Incr" (4) - drive ramps to [Step x Velocity], holds speed then ramps to zero at encoder position defined by [Step x Value] within position tolerance window. "Encoder Abs" (6) - drive ramps to [Step x Velocity], in direction required, holds speed, then ramps to zero at position within tolerance window. "End Hold Pos" (7) - drive holds last position for [Step x Dwell] time then stops. The drive must have [Direction Mode] set to "Bipolar" for the position regulator to function properly. Current, Torque and Regen Power Limits must be set so as not to limit the programmed deceleration time. If one of the limits occur, the position regulator may overshoot the position set point. Sleep Mode must be turned off.	

츤	$\begin{aligned} & \text { 을 } \\ & \text { 흥 } \end{aligned}$	2	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		[
르ㅍㅜㅜㄹ		$\begin{aligned} & 721 \\ & 731 \\ & 741 \\ & 751 \\ & 761 \\ & 771 \\ & 781 \\ & 791 \\ & 801 \\ & 811 \\ & 821 \\ & 831 \\ & 841 \\ & 851 \\ & 861 \\ & 871 \end{aligned}$	[Step 1 Velocity] [Step 2 Velocity] [Step 3 Velocity] [Step 4 Velocity] [Step 5 Velocity] [Step 6 Velocity] [Step 7 Velocity] [Step 8 Velocity] [Step 9 Velocity] [Step 10 Velocity] [Step 11 Velocity] [Step 12 Velocity] [Step 13 Velocity] [Step 14 Velocity] [Step 15 Velocity] [Step 16 Velocity] Step Speed - Sign of this value is used to determine direction for Time, Time Blended, Digital Input \& Parameter Level step types. The value is an absolute number for all encoder step types	Default: Min/Max Units:	$\begin{aligned} & \hline 0.0 \\ & -/+[\text { Maximum Speed }] \\ & 0.1 \mathrm{~Hz} \\ & 0.1 \mathrm{RPM} \end{aligned}$	
\%		722 732 742 752 762 772 782 792 802 812 822 832 842 852 882 872	[Step 1 AccelTime] [Step 2 AccelTime] [Step 3 AccelTime] [Step 4 AcceITime] [Step 5 AccelTime] [Step 6 AccelTime] [Step 7 AccelTime] [Step 8 AccelTime] [Step 9 AccelTime] [Step 10 AccelTime] [Step 11 AccelTime] [Step 12 AccelTime] [Step 13 AccelTime] [Step 14 AccelTime] [Step 15 AccelTime] [Step 16 AccelTime] This is the acceleration rate for the step. Sets the time to ramp from zero to [Maximum Speed].	Default: Min/Max Units:	$\begin{aligned} & \text { 10.0 Secs } \\ & 0.0 / 3600.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	

읖	$\begin{aligned} & \text { 은 } \\ & \text { 운 } \end{aligned}$	$\stackrel{1}{2}$	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		(\%
		$\begin{aligned} & 723 \\ & 733 \\ & 743 \\ & 753 \\ & 763 \\ & 737 \\ & 783 \\ & 793 \\ & 803 \\ & 813 \\ & 823 \\ & 833 \\ & 843 \\ & 853 \\ & 863 \\ & 873 \end{aligned}$	[Step 1 DecelTime] [Step 2 DecelTime] [Step 3 DecelTime] [Step 4 DecelTime] [Step 5 DecelTime] [Step 6 DecelTime] [Step 7 DecelTime] [Step 8 DecelTime] [Step 9 DecelTime] [Step 10 DecelTime] [Step 11 DecelTime] [Step 12 DecelTime] [Step 13 DecelTime] [Step 14 DecelTime] [Step 15 DecelTime] [Step 16 DecelTime] This is the deceleration rate for the step. Sets the time to ramp from [Maximum Speedl to zero.	Default: Min/Max Units:	$\begin{aligned} & \hline 10.0 \text { Secs } \\ & 0.0 / 3600.0 \text { Secs } \\ & 0.1 \text { Secs } \end{aligned}$	
		$\begin{aligned} & \hline 724 \\ & 734 \\ & 744 \\ & 754 \\ & 764 \\ & 774 \\ & 784 \\ & 794 \\ & 794 \\ & 804 \\ & 814 \\ & 824 \\ & 834 \\ & 844 \\ & 854 \\ & 864 \\ & 874 \end{aligned}$	[Step 1 Value] [Step 2 Value] [Step 3 Value] [Step 4 Value] [Step 5 Value] [Step 6 Value] [Step 7 Value] [Step 8 Value] [Step 9 Value] [Step 10 Value] [Step 11 Value] [Step 12 Value] [Step 13 Value] [Step 14 Value] [Step 15 Value] [Step 16 Value] Sets the step value used for time, time blend, digital input number, parameter level and encoder based units. Also determines the condition to move to the next step. Time/Time Blend: 0.00-3600.00 seconds Digital Input: 1 to 6 (decimal ignored) The sign value " + " makes inputs "active high" and a "-"makes them "active low". Parameter Level: parameter number Encoder Absolute/Encoder Incremental/ Encoder Incremental Blend:99,999.00 units (see [Counts per Unit]).	Default: Min/Max Units:	6.0 Based on [Step x Type] 0.01 Units dependent on [Step \times Type]	

은	$\begin{array}{r} \text { 을 } \\ \text { 훈 } \end{array}$	2	Parameter Name \& Description See page 3-2 for symbol descriptions	Values		
$\begin{aligned} & \text { 른 } \\ & \text { 문 } \\ & 0 \\ & \hline 0 \end{aligned}$		725 735 745 755 765 775 785 795 805 815 825 835 845 855 865 875	[Step 1 Dwell] [Step 2 Dwell] [Step 3 Dwell] [Step 4 Dwell] [Step 5 Dwell] [Step 6 Dwell] [Step 7 Dwell] [Step 8 Dwell] [Step 9 Dwell] [Step 10 Dwell] [Step 11 Dwell] [Step 12 Dwell] [Step 13 Dwell] [Step 14 Dwell] [Step 15 Dwell] [Step 16 Dwell] After the condition to move to the next step has been satisfied, the drive continues at its present velocity or position until the dwell time expires. At that point the next step is executed. Not applicable for blend-type moves.	Default: Min/Ma Units:	10.0 Based on [Step x Type] 0.01 Secs If [Step x Type] = "Param Level," units are the same as the parameter number specified in [Step x Value]	
		726 736 746 756 766 776 786 796 806 816 826 836 846 856 866 876	[Step 1 Batch] [Step 2 Batch] [Step 3 Batch] [Step 4 Batch] [Step 5 Batch] [Step 6 Batch] [Step 7 Batch] [Step 8 Batch] [Step 9 Batch] [Step 10 Batch] [Step 11 Batch] [Step 12 Batch] [Step 13 Batch] [Step 14 Batch] [Step 15 Batch] [Step 16 Batch] Sets the number of time to run this step. " 0 " = continuously run this step.	Default: Min/Ma Units:	$\begin{aligned} & 1 \\ & 0 / 1000000 \\ & 1 \end{aligned}$	

읖	$\begin{aligned} & \text { 을 } \\ & \text { OU } \\ & \text { U } \end{aligned}$	-	Parameter Name \& Description See page 3-2 for symbol descriptions	Values	(1)
	Profile Step 1-16	$\begin{aligned} & 727 \\ & 737 \\ & 747 \\ & 757 \\ & 767 \\ & 777 \\ & 787 \\ & 797 \\ & 807 \\ & 817 \\ & 827 \\ & 837 \\ & 847 \\ & 857 \\ & 867 \\ & 877 \end{aligned}$	[Step 1 Next] [Step 2 Next] [Step 3 Next] [Step 4 Next] [Step 5 Next] [Step 6 Next] [Step 7 Next] [Step 8 Next] [Step 9 Next] [Step 10 Next] [Step 11 Next] [Step 12 Next] [Step 13 Next] [Step 14 Next] [Step 15 Next] [Step 16 Next] Sets the step number to execute after this step is complete (including [Step x Batch]).	Default: 2 Min/Max: $1 / 16$ Units: 1	

Parameter Cross Reference - by Name

Parameter Name	Number	Group	Page
Accel Mask	281	Masks \& Owners	3-48
Accel Owner	293	Masks \& Owners	3-49
Accel Time X	140, 141	Ramp Rates	3-26
Adj Volt AccTime	675	Adjust Voltage	3-64
Adj Volt Command	662	Adjust Voltage	3-63
Adj Volt DecTime	676	Adjust Voltage	3-64
Adj Volt Phase	650	Adjust Voltage	3-63
Adj Volt Preset1-7	654-660	Adjust Voltage	3-63
Adj Volt Ref Hi	652	Adjust Voltage	3-63
Adj Volt Ref Lo	653	Adjust Voltage	3-63
Adj Volt S Curve	677	Adjust Voltage	3-64
Adj Volt Select	651	Adjust Voltage	3-63
Adj Volt Trim \%	672	Adjust Voltage	3-64
Adj Volt Trim Hi	670	Adjust Voltage	3-64
Adj Volt Trim Lo	671	Adjust Voltage	3-64
Adj Volt TrimSel	669	Adjust Voltage	3-64
Alarm Clear	261	Alarms	3-44
Alarm Config 1	259	Alarms	3-44
Alarm X @ Fault	229, 230	Diagnostics	3-41
Alarm X Code	262-269	Alarms	3-44
Analog In X Hi	322, 325	Analog Inputs	3-52
Analog In X Lo	323,326	Analog Inputs	3-52
Analog In X Loss	324,327	Analog Inputs	3-52
Analog In1 Value	16	Metering	3-8
Analog In2 Value	17	Metering	3-8
Analog OutX Hi	343, 346	Analog Outputs	3-53
Analog Out X Lo	344, 347	Analog Outputs	3-53
Analog Out X Sel	342, 345	Analog Outputs	3-53
Anlg In Contig	320	Analog Inputs	3-51
Anlg In Sqr Root	321	Analog Inputs	3-51
Anlg Out Absolut	341	Analog Outputs	3-52
Anlg Out Config	340	Analog Outputs	3-52
Anlg OutX Scale	354, 355	Analog Outputs	3-53
Anlg OutX Setpt	377, 378	Analog Outputs	3-54
Auto Rstrt Delay	175	Restart Modes	3-30
Auto Rstrt Tries	174	Restart Modes	3-30
Autotune	61	Torq Attributes	3-12
Autotune Torque	66	Torq Attributes	3-13
Break Frequency	72	Volts per Hertz	3-15
Break Voltage	71	Volts per Hertz	3-15
Brk Alarm Travel	610	Torq Proving	3-61
Brk Release Time	604	Torq Proving	3-60
Brk Set Time	607	Torq Proving	3-60
BrkSlip Count	609	Torq Proving	3-61
Bus Reg Kd	165	Stop/Brake Modes	3-29
Bus Reg Ki	160	Stop/Brake Modes	3-28
Bus Reg Kp	164	Stop/Brake Modes	3-29
Bus Reg Mode X	161, 162	Stop/Brake Modes	3-29
Commanded Freq	2	Metering	3-7
Commanded Torque	24	Metering	3-8
Compensation	56	Torq Attributes	3-11
Control Status	440	Torq Attributes	3-14
Control SW Ver	29	Drive Data	3-9
Counts Per Unit	708	ProfSetup/Status	3-66
Current Lmt Gain	149	Load Limits	3-27
Current Lmt Sel	147	Load Limits	3-26
Current Lmt Val	148	Load Limits	3-27
Current Rate Limit	154	Load Limits	3-27
Data In XX	300-307	Datalinks	3-49

Parameter Name	Number	Group	Page
Data Out XX	310-317	Datalinks	3-50
DB Resistor	647	Oil Well Pump	3-62
DB Resistor Type	163	Stop/Brake Modes	3-29
DB While Stopped	145	Stop/Brake Modes	3-28
DC Brake Level	158	Stop/Brake Modes	3-28
DC Brake Time	159	Stop/Brake Modes	3-28
DC Brk Lvl Sel	157	Stop/Brake Modes	3-28
DC Bus Memory	13	Metering	3-7
DC Bus Voltage	12	Metering	3-7
Decel Mask	282	Masks \& Owners	3-48
Decel Owner	294	Masks \& Owners	3-49
Decel Time X	142, 143	Ramp Rates	3-26
Dig In Status	216	Diagnostics	3-40
Dig Out Invert	392	Digital Outputs	3-58
Dig Out Mask	394	Digital Outputs	3-59
Dig Out Param	393	Digital Outputs	3-58
Dig Out Setpt	379	Digital Outputs	3-56
Dig Out Status	217	Diagnostics	3-40
Dig Out X Level	$\begin{array}{\|l\|} \hline 381, \\ 385,389 \\ \hline \end{array}$	Digital Outputs	3-57
Dig OutX OffTime	$\begin{array}{\|l\|} \hline 383, \\ 387,391 \\ \hline \end{array}$	Digital Outputs	3-58
Dig OutX OnTime	$\begin{array}{\|l\|} \hline 382, \\ 386,390 \\ \hline \end{array}$	Digital Outputs	3-57
Digital InX Sel	361-366	Digital Inputs	3-55
Digital OutX Sel	$\begin{array}{\|l\|} \hline 380, \\ 384,388 \end{array}$	Digital Outputs	3-57
Direction Mask	279	Masks \& Owners	3-48
Direction Mode	190	Direction Config	3-33
Direction Owner	291	Masks \& Owners	3-49
DPI Baud Rate	270	Comm Control	3-46
DPI Fdbk Select	299	Comm Control	3-47
DPI Port Sel	274	Comm Control	3-47
DPI Port Value	275	Comm Control	3-47
DPI Ref Select	298	Comm Control	3-47
Drive Alarm X	211, 212	Diagnostics	3-38
Drive Checksum	203	Drive Memory	3-36
Drive Logic Rsit	271	Comm Control	3-46
Drive OL Count	219	Diagnostics	3-40
Drive OL Mode	150	Load Limits	3-27
Drive Ramp Rsit	273	Comm Control	3-46
Drive Ref Rslt	272	Comm Control	3-46
Drive Status X	209, 210	Diagnostics	3-37
Drive Temp	218	Diagnostics	3-40
Droop RPM @ FLA	152	Load Limits	3-27
Dyn UserSet Actv	206	Drive Memory	3-36
Dyn UserSet Cnfg	204	Drive Memory	3-36
Dyn UserSet Sel	205	Drive Memory	3-36
Elapsed kWh	14	Metering	3-8
Elapsed MWh	9	Metering	3-7
Elapsed Run Time	10	Metering	3-7
Enc Position Fdbk	414	Speed Feedback	3-15
Encoder Pos Tol	707	ProfSetup/Status	3-66
Encoder PPR	413	Speed Feedback	3-15
Encoder Speed	415	Speed Feedback	3-15
Encoder Z Chan	423	Speed Feedback	3-16
Fault 1 Code	243	Faults	3-43
Fault 1 Time	244	Faults	3-43
Fault 2 Code	245	Faults	3-43

Parameter Name	Number	Group	Page
Fault 2 Time	246	Faults	3-43
Fault 3 Code	247	Faults	3-43
Fault 3 Time	248	Faults	3-43
Fault 4 Code	249	Faults	3-43
Fault 4 Time	250	Faults	3-43
Fault 5 Code	251	Faults	3-43
Fault 5 Time	252	Faults	3-43
Fault 6 Code	253	Faults	3-43
Fault 6 Time	254	Faults	3-43
Fault 7 Code	255	Faults	3-43
Fault 7 Time	256	Faults	3-43
Fault 8 Code	257	Faults	3-43
Fault 8 Time	258	Faults	3-43
Fault Amps	225	Diagnostics	3-41
Fault Bus Volts	226	Diagnostics	3-41
Fault Clear	240	Faults	3-42
Fault Clear Mode	241	Faults	3-43
Fault Clr Mask	283	Masks \& Owners	3-48
Fault Clr Owner	295	Masks \& Owners	3-49
Fault Config 1	238	Faults	3-42
Fault Speed	224	Diagnostics	3-40
Fdbk Filter Sel	416	Speed Feedback	3-15
Feedback Select	80	Spd Mode \& Limits	3-17
Find Home Ramp	714	ProfSetup/Status	3-66
Find Home Speed	713	ProfSetup/Status	3-66
Float Tolerance	606	Torq Proving	3-60
Flux Braking	166	Stop/Brake Modes	3-30
Flux Current	5	Metering	3-7
Flux Current Ref	63	Torq Attributes	3-12
Flux Up Mode	57	Torq Attributes	3-11
Flux Up Time	58	Torq Attributes	3-11
Flying Start En	169	Restart Modes	3-30
Flying StartGain	170	Restart Modes	3-30
Gearbox Limit	648	Oil Well Pump	3-62
Gearbox Rating	642	Oil Well Pump	3-62
Gearbox Sheave	643	Oil Well Pump	3-62
Gearbox Ratio	644	Oil Well Pump	3-62
Gnd Warn Level	177	Power Loss	3-32
Inertia Autotune	67	Torq Attributes	3-13
IR Voltage Drop	62	Torq Attributes	3-12
Ixo Voltage Drop	64	Torq Attributes	3-12
Jog Mask	278	Masks \& Owners	3-48
Jog Owner	290	Masks \& Owners	3-48
Jog Speed 1	100	Discrete Speeds	3-20
Jog Speed 2	108	Discrete Speeds	3-20
Kf Speed Loop	447	Speed Regulator	3-25
Ki Speed Loop	445	Speed Regulator	3-25
Kp Speed Loop	446	Speed Regulator	3-25
Language	201	Drive Memory	3-35
Last Stop Source	215	Diagnostics	3-39
Load Frm Usr Set	198	Drive Memory	3-35
Load Loss Level	187	Power Loss	3-33
Load Loss Time	188	Power Loss	3-33
Local Mask	285	Masks \& Owners	3-48
Local Owner	297	Masks \& Owners	3-49
Logic Mask	276	Masks \& Owners	3-47
		Security	3-51
Logic Mask Act	598	Security	3-51
Man Ref Preload	193	HIM Ref Config	3-34
Marker Pulse	421	Speed Feedback	3-16
Maximum Freq	55	Torq Attributes	3-10
Maximum Speed	82	Spd Mode \& Limits	3-17
Maximum Voltage	54	Torq Attributes	3-10

Parameter Name	Number	Group	Page
Max Rod Speed	640	Oil Well Pump	3-62
Max Rod Torque	638	Oil Well Pump	3-62
MicroPos Scale\%	611	Torq Proving	3-61
Min Adj Voltage	661	Adjust Voltage	3-63
Minimum Speed	81	Spd Mode \& Limits	3-17
Min Rod Speed	639	Oil Well Pump	3-62
MOP Adj VoltRate	663	Adjust Voltage	3-63
MOP Mask	284	Masks \& Owners	3-48
MOP Owner	296	Masks \& Owners	3-49
MOP Rate	195	MOP Config	3-34
MOP Reference	11	Metering	3-7
Motor Cntl Sel	53	Torq Attributes	3-10
Motor Fdbk Type	412	Speed Feedback	3-15
Motor NP FLA	42	Motor Data	3-9
Motor NP Hertz	43	Motor Data	3-9
Motor NP Power	45	Motor Data	3-9
Motor NP RPM	44	Motor Data	3-9
Motor NP Volts	41	Motor Data	3-9
Motor OL Count	220	Diagnostics	3-40
Motor OL Factor	48	Motor Data	3-10
Motor OL Hertz	47	Motor Data	3-10
Motor Poles	49	Motor Data	3-10
Motor Sheave	645	Oil Well Pump	3-62
Motor Type	40	Motor Data	3-9
Mtr NP Pwr Units	46	Motor Data	3-9
Mtr OL Trip Time	221	Diagnostics	3-40
Mtr Tor Cur Ref	441	Torq Attributes	3-14
Neg Torque Limit	437	Torq Attributes	3-14
Notch Filter Freq	419	Speed Feedback	3-15
Notch Filter K	420	Speed Feedback	3-15
OilWell Pump Sel	641	Oil Well Pump	3-62
Output Current	3	Metering	3-7
Output Freq	1	Metering	3-7
Output Power	7	Metering	3-7
Output Powr Fctr	8	Metering	3-7
Output Voltage	6	Metering	3-7
Overspeed Limit	83	Spd Mode \& Limits	3-17
Param Access Lvl	196	Drive Memory	3-34
PCP Pump Sheave	637	Oil Well Pump	3-62
PI BW Filter	139	Process PI	3-24
PI Configuration	124	Process PI	3-22
PI Control	125	Process PI	3-22
PI Deriv Time	459	Process PI	3-24
PI Error Meter	137	Process PI	3-24
PI Fdback Meter	136	Process PI	3-24
PI Feedback Hi	462	Process PI	3-24
PI Feedback Lo	463	Process PI	3-24
PI Feedback Sel	128	Process PI	3-23
PI Integral Time	129	Process PI	3-23
PI Lower Limit	131	Process PI	3-23
PI Output Gain	464	Process PI	3-25
PI Output Meter	138	Process PI	3-24
PI Preload	133	Process PI	3-23
PI Prop Gain	130	Process PI	3-23
PI Ref Meter	135	Process PI	3-24
PI Reference Hi	460	Process PI	3-24
Pl Reference Lo	461	Process PI	3-24
PI Reference Sel	126	Process PI	3-22
PI Setpoint	127	Process PI	3-23
PI Status	134	Process PI	3-24
PI Upper Limit	132	Process PI	3-23
Port Mask Act	595	Security	3-50
Pos Reg Filter	718	ProfSetup/Status	3-66

Parameter Name	Number	Group	Page
Pos Reg Gain	719	ProfSetup/Status	3-66
Pos Torque Limit	436	Torq Attributes	3-14
Pos/Spd Prof Cmd	705	ProfSetup/Status	3-66
Pos/Spd Prof Sts	700	ProfSetup/Status	3-65
Power Loss Level	186	Power Loss	3-33
Power Loss Mode	184	Power Loss	3-32
Power Loss Time	185	Power Loss	3-32
Power Up Marker	242	Faults	3-43
Powerup Delay	167	Restart Modes	3-30
Preset Speed 1-7	101-107	Discrete Speeds	3-20
PTC HW Value	18	Metering	3-8
Pulse In Scale	422	Speed Feedback	3-16
Pulse Input Ref	99	Speed Reference	3-20
PWM Frequency	151	Load Limits	3-27
Ramped Speed	22	Metering	3-8
Rated Amps	28	Drive Data	3-8
Rated kW	26	Drive Data	3-8
Rated Volts	27	Drive Data	3-8
Reference Mask	280	Masks \& Owners	3-48
Reference Owner	292	Masks \& Owners	3-49
Regen Power Limit	153	Load Limits	3-27
Reset Meters	200	Drive Memory	3-35
Reset To Defalts	197	Drive Memory	3-35
Rev Speed Limit	454	Speed Regulator	3-18
Rod Load Torque	631	Oil Well Pump	3-61
Run Boost	70	Volts per Hertz	3-14
S Curve \%	146	Ramp Rates	3-26
Save HIM Ref	192	HIM Ref Config	3-34
Save MOP Ref	194	MOP Config	3-34
Save To User Set	199	Drive Memory	3-35
ScaleX In Hi	477-495	Scaled Blocks	3-44
ScaleX In Lo	478-496	Scaled Blocks	3-45
ScaleX In Value	476-494	Scaled Blocks	3-44
ScaleX Out Hi	479-497	Scaled Blocks	3-45
ScaleX Out Lo	480-498	Scaled Blocks	3-45
ScaleX Out Value	481-499	Scaled Blocks	3-45
Shear Pin Time	189	Power Loss	3-33
Skip Freq Band	87	Spd Mode \& Limits	3-18
Skip Frequency 1-3	84-86	Spd Mode \& Limits	3-17
Sleep Level	182	Restart Modes	3-32
Sleep Time	183	Restart Modes	3-32
Sleep-Wake Mode	178	Restart Modes	3-31
Sleep-Wake Ref	179	Restart Modes	3-32
Slip Comp Gain	122	Slip Comp	3-21
Slip RPM @ FLA	121	Slip Comp	3-21
Slip RPM Meter	123	Slip Comp	3-21
Spd Dev Band	602	Torq Proving	3-60
Spd Fdbk No Filt	21	Metering	3-8
SpdBand Integrat	603	Torq Proving	3-60
Speed Desired BW	449	Speed Regulator	3-25
Speed Feedback	25	Metering	3-8
Speed Loop Meter	451	Speed Regulator	3-26
Speed Ref Source	213	Diagnostics	3-39
Speed Ref X Hi	91,94	Speed Reference	3-19
Speed Ref X Lo	92, 95	Speed Reference	3-19
Speed Ref X Sel	90,93	Speed Reference	3-19
Speed Reference	23	Metering	3-8
Speed Units	79	Spd Mode \& Limits	3-16
Speed/Torque Mod	88	Spd Mode \& Limits	3-18
Start At PowerUp	168	Restart Modes	3-30
Start Inhibits	214	Diagnostics	3-39
Start Mask	277	Masks \& Owners	3-47
Start Owner	289	Masks \& Owners	3-48

Parameter Name	Number	Group	Page
Start/Acc Boost	69	Volts per Hertz	3-14
Status X @ Fault	227, 228	Diagnostics	3-41
Step x AccelTime	722...	Profile Setup	3-68
Step x Batch	726...	Profile Setup	3-70
Step x DecelTime	723...	Profile Setup	3-69
Step x Dwell	725...	Profile Setup	3-70
Step x Next	727...	Profile Setup	3-71
Step x Type	720...	Profile Setup	3-67
Step x Value	724...	Profile Setup	3-69
Step x Velocity	721...	Profile Setup	3-68
Stop Mode X	155, 156	Stop/Brake Modes	3-28
Stop Owner	288	Masks \& Owners	3-48
SV Boost Filter	59	Torq Attributes	3-11
TB Man Ref Hi	97	Speed Reference	3-20
TB Man Ref Lo	98	Speed Reference	3-20
TB Man Ref Sel	96	Speed Reference	3-20
Testpoint X Data	235, 237	Diagnostics	3-42
Testpoint X Sel	234, 236	Diagnostics	3-42
Torq Ref A Div	430	Torq Attributes	3-13
TorqAlarm Level	632	Oil Well Pump	3-61
TorqAlarm Action	633	Oil Well Pump	3-61
TorqAlarm Dwell	634	Oil Well Pump	3-61
TorqAlrm Timeout	635	Oil Well Pump	3-61
TorqAlrm TO Act	636	Oil Well Pump	3-61
TorqLim SlewRate	608	Torq Proving	3-60
TorqProve Cnfg	600	Torq Proving	3-59
TorgProve Setup	601	Torq Proving	3-60
TorqProve Status	612	Torq Proving	3-61
Torque Current	4	Metering	3-7
Torque Ref B Mult	434	Torq Attributes	3-13
Torque Ref X Hi	428, 432	Torq Attributes	3-13
Torque Ref X Lo	429, 433	Torq Attributes	3-13
Torque Ref X Sel	427, 431	Torq Attributes	3-13
Torque Setpoint	435	Torq Attributes	3-14
Torque Setpoint2	438	Torq Attributes	3-14
Total Gear Ratio	646	Oil Well Pump	3-62
Total Inertia	450	Speed Regulator	3-26
Trim \% Setpoint	116	Speed Trim	3-21
Trim Hi	119	Speed Trim	3-21
Trim In Select	117	Speed Trim	3-21
Trim Lo	120	Speed Trim	3-21
Trim Out Select	118	Speed Trim	3-21
Units Traveled	701	ProfSetup/Status	3-65
Vel Override	711	ProfSetup/Status	3-66
Voltage Class	202	Drive Memory	3-35
Wake Level	180	Restart Modes	3-32
Wake Time	181	Restart Modes	3-32
Write Mask Act	597	Security	3-50
Write Mask Cfg	596	Security	3-50
ZeroSpdFloatTime	605	Torq Proving	3-60

Parameter Cross Reference - by Number

Number	Parameter Name	Group	Page
1	Output Freq	Metering	3-7
2	Commanded Freq	Metering	3-7
3	Output Current	Metering	3-7
4	Torque Current	Metering	3-7
5	Flux Current	Metering	3-7
6	Output Voltage	Metering	3-7
7	Output Power	Metering	3-7
8	Output Powr Fctr	Metering	3-7
9	Elapsed MWh	Metering	3-7
10	Elapsed Run Time	Metering	3-7
11	MOP Reference	Metering	3-7
12	DC Bus Voltage	Metering	3-7
13	DC Bus Memory	Metering	3-7
14	Elapsed kWh	Metering	3-8
16	Analog In1 Value	Metering	3-8
17	Analog In2 Value	Metering	3-8
18	PTC HW Value	Metering	3-8
21	Spd Fdbk No Filt	Metering	3-8
22	Ramped Speed	Metering	3-8
23	Speed Reference	Metering	3-8
24	Commanded Torque	Metering	3-8
25	Speed Feedback	Metering	3-8
26	Rated kW	Drive Data	3-8
27	Rated Volts	Drive Data	3-8
28	Rated Amps	Drive Data	3-8
29	Control SW Ver	Drive Data	3-9
40	Motor Type	Motor Data	3-9
41	Motor NP Volts	Motor Data	3-9
42	Motor NP FLA	Motor Data	3-9
43	Motor NP Hertz	Motor Data	3-9
44	Motor NP RPM	Motor Data	3-9
45	Motor NP Power	Motor Data	3-9
46	Mtr NP Pwr Units	Motor Data	3-9
47	Motor OL Hertz	Motor Data	3-10
48	Motor OL Factor	Motor Data	3-10
49	Motor Poles	Motor Data	3-10
53	Motor Cntl Sel	Torq Attributes	3-10
54	Maximum Voltage	Torq Attributes	3-10
55	Maximum Freq	Torq Attributes	3-10
56	Compensation	Torq Attributes	3-11
57	Flux Up Mode	Torq Attributes	3-11
58	Flux Up Time	Torq Attributes	3-11
59	SV Boost Filter	Torq Attributes	3-11
61	Autotune	Torq Attributes	3-12
62	IR Voltage Drop	Torq Attributes	3-12
63	Flux Current Ref	Torq Attributes	3-12
64	Ixo Voltage Drop	Torq Attributes	3-12
66	Autotune Torque	Torq Attributes	3-13
67	Inertia Autotune	Torq Attributes	3-13
69	Start/Acc Boost	Volts per Hertz	3-14
70	Run Boost	Volts per Hertz	3-14
71	Break Voltage	Volts per Hertz	3-15
72	Break Frequency	Volts per Hertz	3-15
79	Speed Units	Spd Mode \& Limits	3-16
80	Feedback Select	Spd Mode \& Limits	3-17
81	Minimum Speed	Spd Mode \& Limits	3-17
82	Maximum Speed	Spd Mode \& Limits	3-17
83	Overspeed Limit	Spd Mode \& Limits	3-17
84-86	Skip Frequency 1-3	Spd Mode \& Limits	3-17

Number	Parameter Name	Group	Page
87	Skip Freq Band	Spd Mode \& Limits	3-18
88	Speed/Torque Mod	Spd Mode \& Limits	3-18
90,93	Speed Ref X Sel	Speed Reference	3-19
91,94	Speed Ref X Hi	Speed Reference	3-19
92,95	Speed Ref X Lo	Speed Reference	3-19
96	TB Man Ref Sel	Speed Reference	3-20
97	TB Man Ref Hi	Speed Reference	3-20
98	TB Man Ref Lo	Speed Reference	3-20
99	Pulse Input Ref	Speed Reference	3-20
100	Jog Speed 1	Discrete Speeds	3-20
101-107	Preset Speed 1-7	Discrete Speeds	3-20
108	Jog Speed 2	Discrete Speeds	3-20
116	Trim \% Setpoint	Speed Trim	3-21
117	Trim In Select	Speed Trim	3-21
118	Trim Out Select	Speed Trim	3-21
119	Trim Hi	Speed Trim	3-21
120	Trim Lo	Speed Trim	3-21
121	Slip RPM @ FLA	Slip Comp	3-21
122	Slip Comp Gain	Slip Comp	3-21
123	Slip RPM Meter	Slip Comp	3-21
124	PI Configuration	Process PI	3-22
125	PI Control	Process PI	3-22
126	PI Reference Sel	Process PI	3-22
127	PI Setpoint	Process PI	3-23
128	PI Feedback Sel	Process PI	3-23
129	PI Integral Time	Process PI	3-23
130	PI Prop Gain	Process PI	3-23
131	PI Lower Limit	Process PI	3-23
132	PI Upper Limit	Process PI	3-23
133	PI Preload	Process PI	3-23
134	PI Status	Process PI	3-24
135	PI Ref Meter	Process PI	3-24
136	PI Fdback Meter	Process PI	3-24
137	PI Error Meter	Process PI	3-24
138	PI Output Meter	Process PI	3-24
139	PI BW Filter	Process PI	3-24
140, 141	Accel Time X	Ramp Rates	3-26
142, 143	Decel Time X	Ramp Rates	3-26
145	DB While Stopped	Stop/Brake Modes	3-28
146	S Curve \%	Ramp Rates	3-26
147	Current Lmt Sel	Load Limits	3-26
148	Current Lmt Val	Load Limits	3-27
149	Current Lmt Gain	Load Limits	3-27
150	Drive OL Mode	Load Limits	3-27
151	PWM Frequency	Load Limits	3-27
152	Droop RPM @ FLA	Load Limits	3-27
153	Regen Power Limit	Load Limits	3-27
154	Current Rate Limit	Load Limits	3-27
155, 156	Stop Mode X	Stop/Brake Modes	3-28
157	DC Brk Lvl Sel	Stop/Brake Modes	3-28
158	DC Brake Level	Stop/Brake Modes	3-28
159	DC Brake Time	Stop/Brake Modes	3-28
160	Bus Reg Ki	Stop/Brake Modes	3-28
161, 162	Bus Reg Mode X	Stop/Brake Modes	3-29
163	DB Resistor Type	Stop/Brake Modes	3-29
164	Bus Reg Kp	Stop/Brake Modes	3-29
165	Bus Reg Kd	Stop/Brake Modes	3-29
166	Flux Braking	Stop/Brake Modes	3-30

Number	Parameter Name	Group	Page
167	Powerup Delay	Restart Modes	3-30
168	Start At PowerUp	Restart Modes	3-30
169	Flying Start En	Restart Modes	3-30
170	Flying StartGain	Restart Modes	3-30
174	Auto Rstrt Tries	Restart Modes	3-30
175	Auto Rstrt Delay	Restart Modes	3-30
177	Gnd Warn Level	Power Loss	3-32
178	Sleep-Wake Mode	Restart Modes	3-31
179	Sleep-Wake Ref	Restart Modes	3-32
180	Wake Level	Restart Modes	3-32
181	Wake Time	Restart Modes	3-32
182	Sleep Level	Restart Modes	3-32
183	Sleep Time	Restart Modes	3-32
184	Power Loss Mode	Power Loss	3-32
185	Power Loss Time	Power Loss	3-32
186	Power Loss Level	Power Loss	3-33
187	Load Loss Level	Power Loss	3-33
188	Load Loss Time	Power Loss	3-33
189	Shear Pin Time	Power Loss	3-33
190	Direction Mode	Direction Contig	3-33
192	Save HIM Ref	HIM Ref Config	3-34
193	Man Ref Preload	HIM Ref Config	3-34
194	Save MOP Ref	MOP Config	3-34
195	MOP Rate	MOP Config	3-34
196	Param Access Lvl	Drive Memory	3-34
197	Reset To Defalts	Drive Memory	3-35
198	Load Frm Usr Set	Drive Memory	3-35
199	Save To User Set	Drive Memory	3-35
200	Reset Meters	Drive Memory	3-35
201	Language	Drive Memory	3-35
202	Voltage Class	Drive Memory	3-35
203	Drive Checksum	Drive Memory	3-36
204	Dyn UserSet Cnfg	Drive Memory	3-36
205	Dyn UserSet Sel	Drive Memory	3-36
206	Dyn UserSet Actv	Drive Memory	3-36
209, 210	Drive Status X	Diagnostics	3-37
211,212	Drive Alarm X	Diagnostics	3-38
213	Speed Ref Source	Diagnostics	3-39
214	Start Inhibits	Diagnostics	3-39
215	Last Stop Source	Diagnostics	3-39
216	Dig In Status	Diagnostics	3-40
217	Dig Out Status	Diagnostics	3-40
218	Drive Temp	Diagnostics	3-40
219	Drive OL Count	Diagnostics	3-40
220	Motor OL Count	Diagnostics	3-40
221	Mtr OL Trip Time	Diagnostics	3-40
224	Fault Speed	Diagnostics	3-40
225	Fault Amps	Diagnostics	3-41
226	Fault Bus Volts	Diagnostics	3-41
227, 228	Status X @ Fault	Diagnostics	3-41
229, 230	Alarm X @ Fault	Diagnostics	3-41
234, 236	Testpoint X Sel	Diagnostics	3-42
235, 237	Testpoint X Data	Diagnostics	3-42
238	Fault Config 1	Faults	3-42
240	Fault Clear	Faults	3-42
241	Fault Clear Mode	Faults	3-43
242	Power Up Marker	Faults	3-43
243	Fault 1 Code	Faults	3-43
244	Fault 1 Time	Faults	3-43
245	Fault 2 Code	Faults	3-43
246	Fault 2 Time	Faults	3-43
247	Fault 3 Code	Faults	3-43
248	Fault 3 Time	Faults	3-43

Number	Parameter Name	Group	Page
249	Fault 4 Code	Faults	3-43
250	Fault 4 Time	Faults	3-43
251	Fault 5 Code	Faults	3-43
252	Fault 5 Time	Faults	3-43
253	Fault 6 Code	Faults	3-43
254	Fault 6 Time	Faults	3-43
255	Fault 7 Code	Faults	3-43
256	Fault 7 Time	Faults	3-43
257	Fault 8 Code	Faults	3-43
258	Fault 8 Time	Faults	3-43
259	Alarm Config 1	Alarms	3-44
261	Alarm Clear	Alarms	3-44
262-269	Alarm X Code	Alarms	3-44
270	DPI Baud Rate	Comm Control	3-46
271	Drive Logic Rsit	Comm Control	3-46
272	Drive Ref Rslt	Comm Control	3-46
273	Drive Ramp Rslt	Comm Control	3-46
274	DPI Port Sel	Comm Control	3-47
275	DPI Port Value	Comm Control	3-47
276	Logic Mask	Masks \& Owners	3-47
		Security	3-51
277	Start Mask	Masks \& Owners	3-47
278	Jog Mask	Masks \& Owners	3-48
279	Direction Mask	Masks \& Owners	3-48
280	Reference Mask	Masks \& Owners	3-48
281	Accel Mask	Masks \& Owners	3-48
282	Decel Mask	Masks \& Owners	3-48
283	Fault Clr Mask	Masks \& Owners	3-48
284	MOP Mask	Masks \& Owners	3-48
285	Local Mask	Masks \& Owners	3-48
288	Stop Owner	Masks \& Owners	3-48
289	Start Owner	Masks \& Owners	3-48
290	Jog Owner	Masks \& Owners	3-48
291	Direction Owner	Masks \& Owners	3-49
292	Reference Owner	Masks \& Owners	3-49
293	Accel Owner	Masks \& Owners	3-49
294	Decel Owner	Masks \& Owners	3-49
295	Fault Clr Owner	Masks \& Owners	3-49
296	MOP Owner	Masks \& Owners	3-49
297	Local Owner	Masks \& Owners	3-49
298	DPI Ref Select	Comm Control	3-47
299	DPI Fdbk Select	Comm Control	3-47
300-307	Data In XX	Datalinks	3-49
310-317	Data Out XX	Datalinks	3-50
320	Anlg In Config	Analog Inputs	3-51
321	Anlg In Sqr Root	Analog Inputs	3-51
322, 325	Analog In XHi	Analog Inputs	3-52
323, 326	Analog In X Lo	Analog Inputs	3-52
324, 327	Analog In X Loss	Analog Inputs	3-52
340	Anlg Out Config	Analog Outputs	3-52
341	Anlg Out Absolut	Analog Outputs	3-52
342, 345	Analog OutX Sel	Analog Outputs	3-53
343, 346	Analog Out ${ }^{\text {Hi }}$	Analog Outputs	3-53
344, 347	Analog Out X Lo	Analog Outputs	3-53
354, 355	Anlg Out X Scale	Analog Outputs	3-53
361-366	Digital InX Sel	Digital Inputs	3-55
377, 378	Anlg OutX Setpt	Analog Outputs	3-54
379	Dig Out Setpt	Digital Outputs	3-56
$\begin{aligned} & \hline 380, \\ & 384,388 \end{aligned}$	Digital OutX Sel	Digital Outputs	3-57
$\begin{aligned} & \hline 381, \\ & 385,389 \\ & \hline \end{aligned}$	Dig OutX Level	Digital Outputs	3-57

Number	Parameter Name	Group	Page
$\begin{aligned} & \hline 382, \\ & 386,390 \end{aligned}$	Dig OutX OnTime	Digital Outputs	3-57
$\begin{aligned} & \hline 383, \\ & 387,391 \end{aligned}$	Dig Out X OffTime	Digital Outputs	3-58
392	Dig Out Invert	Digital Outputs	3-58
393	Dig Out Param	Digital Outputs	3-58
394	Dig Out Mask	Digital Outputs	3-59
412	Motor Fdbk Type	Speed Feedback	3-15
413	Encoder PPR	Speed Feedback	3-15
414	Enc Position Fdbk	Speed Feedback	3-15
415	Encoder Speed	Speed Feedback	3-15
416	Fdbk Filter Sel	Speed Feedback	3-15
419	Notch Filter Freq	Speed Feedback	3-15
420	Notch Filter K	Speed Feedback	3-15
421	Marker Pulse	Speed Feedback	3-16
422	Pulse In Scale	Speed Feedback	3-16
423	Encoder Z Chan	Speed Feedback	3-16
427, 431	Torque Ref X Sel	Torq Attributes	3-13
428,432	Torque Ref XHi	Torq Attributes	3-13
429, 433	Torque Ref X Lo	Torq Attributes	3-13
430	Torq Ref A Div	Torq Attributes	3-13
434	Torque Ref B Mult	Torq Attributes	3-13
435	Torque Setpoint	Torq Attributes	3-14
436	Pos Torque Limit	Torq Attributes	3-14
437	Neg Torque Limit	Torq Attributes	3-14
438	Torque Setpoint2	Torq Attributes	3-14
440	Control Status	Torq Attributes	3-14
441	Mtr Tor Cur Ref	Torq Attributes	3-14
445	Ki Speed Loop	Speed Regulator	3-25
446	Kp Speed Loop	Speed Regulator	3-25
447	Kf Speed Loop	Speed Regulator	3-25
449	Speed Desired BW	Speed Regulator	3-25
450	Total Inertia	Speed Regulator	3-26
451	Speed Loop Meter	Speed Regulator	3-26
454	Rev Speed Limit	Speed Regulator	3-18
459	PI Deriv Time	Process PI	3-24
460	PI Reference Hi	Process PI	3-24
461	PI Reference Lo	Process PI	3-24
462	PI Feedback Hi	Process PI	3-24
463	PI Feedback Lo	Process PI	3-24
464	PI Output Gain	Process PI	3-25
476-494	ScaleX In Value	Scaled Blocks	3-44
477-495	ScaleX In Hi	Scaled Blocks	3-44
478-496	ScaleX In Lo	Scaled Blocks	3-45
479-497	ScaleX Out Hi	Scaled Blocks	3-45
480-498	ScaleX Out Lo	Scaled Blocks	3-45
481-499	ScaleX Out Value	Scaled Blocks	3-45
595	Port Mask Act	Security	3-50
596	Write Mask Cfg	Security	3-50
597	Write Mask Act	Security	3-50
598	Logic Mask Act	Security	3-51
600	TorqProve Cnfg	Torq Proving	3-59
601	TorqProve Setup	Torq Proving	3-60
602	Spd Dev Band	Torq Proving	3-60
603	SpdBand Integrat	Torq Proving	3-60
604	Brk Release Time	Torq Proving	3-60
605	ZeroSpdFloatTime	Torq Proving	3-60
606	Float Tolerance	Torq Proving	3-60
607	Brk Set Time	Torq Proving	3-60
608	TorqLim SlewRate	Torq Proving	3-60
609	BrkSlip Count	Torq Proving	3-61
610	Brk Alarm Travel	Torq Proving	3-61
611	MicroPos Scale\%	Torq Proving	3-61

Number	Parameter Name	Group	Page
612	TorqProve Status	Torq Proving	3-61
631	Rod Load Torque	Oil Well Pump	3-61
632	TorqAlarm Level	Oil Well Pump	3-61
633	TorqAlarm Action	Oil Well Pump	3-61
634	TorqAlarm Dwell	Oil Well Pump	3-61
635	TorqAlrm Timeout	Oil Well Pump	3-61
636	TorqAlrm TO Act	Oil Well Pump	3-61
637	PCP Pump Sheave	Oil Well Pump	3-62
638	Max Rod Torque	Oil Well Pump	3-62
639	Min Rod Speed	Oil Well Pump	3-62
640	Max Rod Speed	Oil Well Pump	3-62
641	OilWell Pump Sel	Oil Well Pump	3-62
642	Gearbox Rating	Oil Well Pump	3-62
643	Gearbox Sheave	Oil Well Pump	3-62
644	Gearbox Ratio	Oil Well Pump	3-62
645	Motor Sheave	Oil Well Pump	3-62
646	Total Gear Ratio	Oil Well Pump	3-62
647	DB Resistor	Oil Well Pump	3-62
648	Gearbox Limit	Oil Well Pump	3-62
650	Adj Volt Phase	Adjust Voltage	3-63
651	Adj Volt Select	Adjust Voltage	3-63
652	Adj Volt Ref Hi	Adjust Voltage	3-63
653	Adj Volt Ref Lo	Adjust Voltage	3-63
654-660	Adj Volt Preset1-7	Adjust Voltage	3-63
661	Min Adj Voltage	Adjust Voltage	3-63
662	Adj Volt Command	Adjust Voltage	3-63
663	MOP Adj VoltRate	Adjust Voltage	3-63
669	Adj Volt TrimSel	Adjust Voltage	3-64
670	Adj Volt Trim Hi	Adjust Voltage	3-64
671	Adj Volt Trim Lo	Adjust Voltage	3-64
672	Adj Volt Trim \%	Adjust Voltage	3-64
675	Adj Volt AccTime	Adjust Voltage	3-64
676	Adj Volt DecTime	Adjust Voltage	3-64
677	Adj Volt S Curve	Adjust Voltage	3-64
700	Pos/Spd Prof Sts	ProfSetup/Status	3-65
701	Units Traveled	ProfSetup/Status	3-65
705	Pos/Spd Prof Cmd	ProfSetup/Status	3-66
707	Encoder Pos Tol	ProfSetup/Status	3-66
708	Counts Per Unit	ProfSetup/Status	3-66
711	Vel Override	ProfSetup/Status	3-66
713	Find Home Speed	ProfSetup/Status	3-66
714	Find Home Ramp	ProfSetup/Status	3-66
718	Pos Reg Filter	ProfSetup/Status	3-66
719	Pos Reg Gain	ProfSetup/Status	3-66
720...	Step x Type	Profile Setup	3-67
721...	Step x Velocity	Profile Setup	3-68
722...	Step x AccelTime	Profile Setup	3-68
723...	Step x DecelTime	Profile Setup	3-69
724...	Step x Value	Profile Setup	3-69
725...	Step x Dwell	Profile Setup	3-70
726...	Step x Batch	Profile Setup	3-70
727...	Step x Next	Profile Setup	3-71

Notes:

Troubleshooting

Chapter 4 provides information to guide you in troubleshooting the PowerFlex 700. Included is a listing and description of drive faults (with possible solutions, when applicable) and alarms.

For information on...	See page...
Faults and Alarms	$4-1$
Drive Status	$4-2$
Manually Clearing Faults	$4-4$
Fault Descriptions	$4-4$
Clearing Alarms	$4-9$
Alarm Descriptions	$4-10$
Common Symptoms and Corrective Actions	$4-13$
Testpoint Codes and Functions	$4-16$

Faults and Alarms

A fault is a condition that stops the drive. There are three fault types.

Type	Fault Description	
(1)	Auto-Reset Run	When this type of fault occurs, and [Auto Rstrt Tries] (see page 3-30) is set to a value greater than "0," a user-configurable timer, [Auto Rstrt Delay]] (see page 3-30) begins. When the timer reaches zero, the drive attempts to automatically reset the fault. If the condition that caused the fault is no longer present, the fault will be reset and the drive will be restarted.
(2)	Non-ResettableThis type of fault normally requires drive or motor repair. The cause of the fault must be corrected before the fault can be cleared. The fault will be reset on power up after repair.	
(3)	User ConfigurableThese faults can be enabled/disabled to annunciate or ignore a fault condition.	

An alarm is a condition that, if left untreated, may stop the drive. There are two alarm types.

Type	Alarm Description	
(1)	User ConfigurableThese alarms can be enabled or disabled through [Alarm Config 1] on page 3-44.	
(2)	Non-Configurable	These alarms are always enabled.

Drive Status

The condition or state of your drive is constantly monitored. Any changes will be indicated through the LEDs and/or the HIM (if present).

Front Panel LED Indications

Figure 4.1 Typical Drive Status Indicators

\#	Name	Color	State	Description
(1)	PWR (Power)	Green	Steady	Illuminates when power is applied to the drive.
(2)	STS (Status)	Green	Flashing	Drive ready, but not running \& no faults are present.
			Steady	Drive running, no faults are present.
		Yellow See page 4-10	Flashing, Drive Stopped	A start inhibit condition exists, the drive cannot be started. Check parameter 214 [Start Inhibits].
			Flashing, Drive Running	An intermittent type 1 alarm condition is occurring. Check parameter 211 [Drive Alarm 1].
			Steady, Drive Running	A continuous type 1 alarm condition exists. Check parameter 211 [Drive Alarm 1].
		Red See page 4-4	Flashing	Fault has occurred. Check [Fault x Code] or Fault Queue.
			Steady	A non-resettable fault has occurred.
(3)	PORT	Green	-	Status of DPI port internal communications (if present).
	MOD	Yellow	-	Status of communications module (when installed).
	NET A	Red	-	Status of network (if connected).
	NET B	Red	-	Status of secondary network (if connected).

Precharge Board LED Indications

Precharge Board LED indicators are found on Frame 5 \& 6 drives. The
LEDs are located above the "Line Type" jumper shown in Figure 1.2.

Name	Color	State	Description
Power	Green	Steady	Indicates when precharge board power supply is operational
Alarm	Yellow	Flashing $[1]$ $[2]$ $[3]$ $[4]$ $[5]$ $[6]$ $[7]$	Number in " []" indicates flashes and associated alarm ${ }^{(1)}$: Low line voltage ($<90 \%$). Very low line voltage ($<50 \%$). Low phase (one phase $<80 \%$ of line voltage). Frequency out of range or asymmetry (line sync failed). Low DC bus voltage (triggers ride-through operation). Input frequency momentarily out of range $(40-65 \mathrm{~Hz})$. DC bus short circuit detection active.
Fault	Red	Flashing [2]	Number in "[]" indicates flashes and associated fault ${ }^{(2)}$: DC bus short (Udc <2\% after 20 ms). Line sync failed or low line (Uac <50\% Unom).

(1) An alarm condition automatically resets when the condition no longer exists
(2) A fault indicates a malfunction that must be corrected and can only be reset after cycling power.

HIM Indication

The LCD HIM also provides visual notification of a fault or alarm condition.

Condition	Display				
Drive is indicating a fault. The LCD HIM immediately reports the fault condition by displaying the following. - "Faulted" appears in the status line - Fault number - Fault name - Time that has passed since fault occurred Press Esc to regain HIM control.					
	F \rightarrow F Faulted ${ }^{\text {a }}$ Auto				
	- Fault - F OverVoltage Time Since Fault $\quad 0000: 23: 52$				
Drive is indicating an alarm. The LCD HIM immediately reports the alarm condition by displaying the following. - Alarm name (Type 2 alarms only) - Alarm bell graphic					
	F \rightarrow \|Power Loss		i.i.	Auto	
	0.0 Hz				
	Main Menu: Diagnostics Parameter Device Select				

Manually Clearing Faults

Step

$\mathrm{Key}(\mathrm{s})$

1. Press Esc to acknowledge the fault. The fault information will be removed so that you can use the HIM.
2. Address the condition that caused the fault.

The cause must be corrected before the fault can be cleared.
3. After corrective action has been taken, clear the fault by one of these methods.

- Press Stop
- Cycle drive power
- Set parameter 240 [Fault Clear] to "1."
- "Clear Faults" on the HIM Diagnostic menu.

Fault Descriptions

Table 4.A Fault Types, Descriptions and Actions

Fault	$\stackrel{\text { ¢ }}{ }$		Description	Action
Analog In Loss	29	$\begin{aligned} & \text { (1) } \\ & (3) \end{aligned}$	An analog input is configured to fault on signal loss. A signal loss has occurred. Configure with [Anlg In 1, 2 Loss] on page 3-52.	1. Check parameters. 2. Check for broken/loose connections at inputs.
Anlg Cal Chksum	108		The checksum read from the analog calibration data does not match the checksum calculated.	Replace drive.
Auto Rstrt Tries	33	(3)	Drive unsuccessfully attempted to reset a fault and resume running for the programmed number of [FIt RstRun Tries]. Enable/Disable with [Fault Config 1] on page 3-42.	Correct the cause of the fault and manually clear.
AutoTune Aborted	80		Autotune function was canceled by the user or a fault occurred.	Restart procedure.
Auxiliary Input	2	(1)	Auxiliary input interlock is open.	Check remote wiring.
Cntl Bd Overtemp	55		The temperature sensor on the Main Control Board detected excessive heat.	1. Check Main Control Board fan. 2. Check surrounding air temperature. 3. Verify proper mounting/cooling.
DB Resistance	69		Resistance of the internal DB resistor is out of range.	Replace resistor.

Fault	$\stackrel{1}{2}$		Description	Action
Decel Inhibit	24	(3)	The drive is not following a commanded deceleration because it is attempting to limit bus voltage.	1. Verify input voltage is within drive specified limits. 2. Verify system ground impedance follows proper grounding techniques. 3. Disable bus regulation and/or add dynamic brake resistor and/or extend deceleration time. Refer to the Attention statement on page P-4
Drive OverLoad	64		Drive rating of 110% for 1 minute or 150% for 3 seconds has been exceeded.	Reduce load or extend Accel Time.
Drive Powerup	49		No fault displayed. Used as a Power Up Marker in the Fault Queue indicating that the drive power has been cycled.	
Excessive Load	79		Motor did not come up to speed in the allotted time during autotune.	1. Uncouple load from motor. 2. Repeat Autotune.
Encoder Loss	91		Requires differential encoder. One of the 2 encoder channel signals is missing.	1. Check Wiring. 2. Replace encoder.
Encoder Quad Err	90		Both encoder channels changed state within one clock cycle.	1. Check for externally induced noise. 2. Replace encoder.
Faults Cleared	52		No fault displayed. Used as a marker in the Fault Queue indicating that the fault clear function was performed.	
Flt QueueCleared	51		No fault displayed. Used as a marker in the Fault Queue indicating that the clear queue function was performed.	
FluxAmpsRef Rang	78		The value for flux amps determined by the Autotune procedure exceeds the programmed [Motor NP FLA].	1. Reprogram [Motor NP FLA] with the correct motor nameplate value. 2. Repeat Autotune.
Ground Fault	13	(1)	A current path to earth ground greater than 25% of drive rating.	Check the motor and external wiring to the drive output terminals for a grounded condition.
Hardware Fault	93		Hardware enable is disabled (jumpered high) but logic pin is still low.	1. Check jumper. 2. Replace Main Control Board.
Hardware Fault	130		Gate array load error.	1. Cycle power. 2. Replace Main Control Board.
Hardware Fault	131		Dual port failure.	1. Cycle power. 2. Replace Main Control Board.
Hardware PTC	18		Motor PTC (Positive Temperature Coefficient) Overtemp.	
Heatsink OvrTemp	8	(1)	Heatsink temperature exceeds 100% of [Drive Temp].	1. Verify that maximum ambient temperature has not been exceeded. 2. Check fan. 3. Check for excess load.

Fault	\%		Description	Action
HW OverCurrent	12	(1)	The drive output current has exceeded the hardware current limit.	Check programming. Check for excess load, improper DC boost setting, DC brake volts set too high or other causes of excess current.
Incompat MCB-PB	106	(2)	Drive rating information stored on the power board is incompatible with the main control board.	Load compatible version files into drive.
I/O Comm Loss	121		I/O Board lost communications with the Main Control Board.	Check connector. Check for induced noise. Replace I/O board or Main Control Board.
I/O Failure	122		I/O was detected, but failed the powerup sequence.	Replace Main Control Board.
Input Phase Loss	17		The DC bus ripple has exceeded a preset level.	Check incoming power for a missing phase/blown fuse.
IR Volts Range	77		"Calculate" is the autotune default and the value determined by the autotune procedure for IR Drop Volts is not in the range of acceptable values.	Re-enter motor nameplate data.
IXo VoltageRange	87		Voltage calculated for motor inductive impedance exceeds 25% of [Motor NP Volts].	1. Check for proper motor sizing. 2. Check for correct programming of [Motor NP Volts], parameter 41. 3. Additional output impedance may be required.
Load Loss	15		Drive output torque current is below [Load Loss Level] for a time period greater than [Load Loss time].	1. Verify connections between motor and load. 2. Verify level and time requirements.
Motor Overload	7	$\begin{array}{\|l\|} \hline 1) \\ (3) \end{array}$	Internal electronic overload trip. Enable/Disable with [Fault Config 1] on page 3-42.	An excessive motor load exists. Reduce load so drive output current does not exceed the current set by [Motor NP FLA].
Motor Thermistor	16		Thermistor output is out of range.	1. Verify that thermistor is connected. 2. Motor is overheated. Reduce load.
NVS I/O Checksum	109		EEprom checksum error.	1. Cycle power and repeat function. 2. Replace Main Control Board.
NVS I/O Failure	110		EEprom I/O error.	1. Cycle power and repeat function. 2. Replace Main Control Board.
Output PhaseLoss	21		Current in one or more phases has been lost or remains below a preset level.	Check the drive and motor wiring. Check for phase-to-phase continuity at the motor terminals. Check for disconnected motor leads.

Fault	$\stackrel{1}{2}$	딜	Description	Action
OverSpeed Limit	25	(1)	Functions such as Slip Compensation or Bus Regulation have attempted to add an output frequency adjustment greater than that programmed in [Overspeed Limit].	Remove excessive load or overhauling conditions or increase [Overspeed Limit].
OverVoltage	5	(1)	DC bus voltage exceeded maximum value.	Monitor the AC line for high line voltage or transient conditions. Bus overvoltage can also be caused by motor regeneration. Extend the decel time or install dynamic brake option.
Parameter Chksum	100	(2)	The checksum read from the board does not match the checksum calculated.	1. Restore defaults. 2. Reload User Set if used.
Params Defaulted	48		The drive was commanded to write default values to EEPROM.	1. Clear the fault or cycle power to the drive. 2. Program the drive parameters as needed.
Phase U to Grnd	38		A phase to ground fault has been detected between the drive and motor in this phase.	1. Check the wiring between the drive and motor. 2. Check motor for grounded phase. 3. Replace drive.
Phase V to Grnd	39			
Phase W to Grnd	40			
Phase UV Short	41		Excessive current has been detected between these two output terminals.	1. Check the motor and drive output terminal wiring for a shorted condition. 2. Replace drive.
Phase VW Short	42			
Phase UW Short	43			
Port 1-5 DPI Loss	$\begin{aligned} & 81- \\ & 85 \end{aligned}$	(2)	DPI port stopped communicating. A SCANport device was connected to a drive operating DPI devices at 500 k baud.	1. If adapter was not intentionally disconnected, check wiring to the port. Replace wiring, port expander, adapters, Main Control Board or complete drive as required. 2. Check HIM connection. 3. If an adapter was intentionally disconnected and the [Logic Mask] bit for that adapter is set to "1", this fault will occur. To disable this fault, set the [Logic Mask] bit for the adapter to " 0 ."
Port 1-5 Adapter	$\begin{aligned} & 71- \\ & 75 \end{aligned}$		The communications card has a fault.	1. Check DPI device event queue and corresponding fault information for the device.
Power Loss	3	$\begin{aligned} & 1 \\ & (3) \\ & \hline \end{aligned}$	DC bus voltage remained below 85% of nominal for longer than [Power Loss Time]. Enable/ Disable with [Fault Config 1] on page 3-42.	Monitor the incoming AC line for low voltage or line power interruption.

Fault	$\stackrel{\text { ¢ }}{ }$		Description	Action
Power Unit	70		One or more of the output transistors were operating in the active region instead of desaturation. This can be caused by excessive transistor current or insufficient base drive voltage.	1. Check for damaged output transistors. 2. Replace drive.
Pulse In Loss	92		Z Channel is selected as a pulse input and no signal is present.	1. Check wiring. 2. Replace pulse generator.
Pwr Brd Chksum1	104		The checksum read from the EEPROM does not match the checksum calculated from the EEPROM data.	Clear the fault or cycle power to the drive.
Pwr Brd Chksum2	105	(2)	The checksum read from the board does not match the checksum calculated.	1. Cycle power to the drive. 2. If problem persists, replace drive.
Replaced MCB-PB	107	(2)	Main Control Board was replaced and parameters were not programmed.	1. Restore defaults. 2. Reprogram parameters.
See Manual	28		Encoderless TorqProve has been enabled but user has not read and understood application concerns of encoderless operation.	1. Read the "Attention" on page C-5 relating to the use of TorqProve with no encoder.
Shear Pin	63	(3)	Programmed [Current Lmt Val] has been exceeded. Enable/ Disable with [Fault Config 1] on page 3-42.	Check load requirements and [Current Lmt Val] setting.
Software Fault	88		Microprocessor handshake error.	Replace Main Control Board.
Software Fault	89		Microprocessor handshake error.	Replace Main Control Board.
SW OverCurrent	36	(1)	Drive output current has exceeded the 1 ms current rating. This rating is greater than the 3 second current rating and less than the hardware overcurrent fault level. It is typically 200-250\% of the drive continuous rating	Check for excess load, improper DC boost setting. DC brake volts set too high.
TorqPrv Spd Band	20		Difference between [Commanded Speed] and [Encoder Speed] has exceeded the level set in [Spd Dev Band] for a time period greater than [Spd Band Integrat].	1. Check wiring between drive and motor. 2. Check release of mechanical brake.
Trnsistr OvrTemp	9	(1)	Output transistors have exceeded their maximum operating temperature.	1. Verify that maximum ambient temperature has not been exceeded. 2. Check fan. 3. Check for excess load.

Fault	$\stackrel{\text { ¢ }}{2}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{O}}}{\substack{\text { on }}}$	Description	Action
UnderVoltage	4	(1) (3)	DC bus voltage fell below the minimum value of 407 V DC at 400/480V input or 204V DC at 200/240V input. Enable/Disable with [Fault Config 1] (page 3-42).	Monitor the incoming AC line for low voltage or power interruption.
UserSet1 Chksum	101	(2)	The checksum read from the user set does not match the checksum calculated.	Re-save user set.
UserSet2 Chksum	102	(2)		
UserSet3 Chksum	103	(2)		

(1) See page 4-1 for a description of fault types.

Table 4.B Fault Cross Reference

No..$^{(1)}$	Fault
2	Auxiliary Input
3	Power Loss
4	UnderVoltage
5	OverVoltage
7	Motor Overload
8	Heatsink OvrTemp
9	Trnsistr OvrTemp
12	HW OverCurrent
13	Ground Fault
15	Load Loss
16	Motor Thermistor
17	Input Phase Loss
20	TorqPrv Spd Band
21	Output PhaseLoss
24	Decel Inhibit
25	OverSpeed Limit
28	See Manual
29	Analog In Loss
33	Auto Rstrt Tries
36	SW OverCurrent

No. ${ }^{(1)}$	Fault
38	Phase U to Grnd
39	Phase V to Grnd
40	Phase W to Grnd
41	Phase UV Short
42	Phase VW Short
43	Phase UW Short
48	Params Defaulted
49	Drive Powerup
51	Flt QueueCleared
52	Faults Cleared
55	Cntl Bd Overtemp
63	Shear Pin
64	Drive OverLoad
69	DB Resistance
70	Power Unit
$71-75$	Port 1-5 Adapter
77	IR Volts Range
78	FluxAmpsRef Rang
79	Excessive Load
80	AutoTune Aborted

No. $^{(1)}$	Fault
$81-85$	Port 1-5 DPI Loss
87	IXo VoltageRange
88	Software Fault
89	Software Fault
90	Encoder Quad Err
91	Encoder Loss
92	Pulse In Loss
93	Hardware Fault
100	Parameter Chksum
$101-103$	UserSet Chksum
104	Pwr Brd Chksum1
105	Pwr Brd Chksum2
106	Incompat MCB-PB
107	Replaced MCB-PB
108	Anlg Cal Chksum
120	I/O Mismatch
121	I/O Comm Loss
122	I/O Failure
130	Hardware Fault
131	Hardware Fault

(1) Fault numbers not listed are reserved for future use.

Clearing Alarms

Alarms are automatically cleared when the condition that caused the alarm is no longer present.

Alarm Descriptions

Table 4．C Alarm Descriptions and Actions

Alarm	\％	骨	Descriptio										
AdjVoltRef Cflct	33	（1）	Invalid adjustable voltage reference selection conflict．										
Analog In Loss	5	（1）	An analog input is configured for＂Alarm＂on signal loss and signal loss has occurred．										
Bipolar Conflict	20	（2）	Parameter 190 ［Direction Mode］is set to＂Bipolar＂or＂Reverse Dis＂and one or more of the following digital input functions is configured：＂Fwd／Reverse，＂ ＂Run Forward，＂＂Run Reverse，＂＂Jog Forward＂or＂Jog Reverse．＂										
Brake Slipped	32	（2）	Encoder movement has exceeded the level in［BrkSlipCount］after the brake was set．										
Decel Inhibt	10	（1）	Drive is being inhibited from decelerating．										
Dig In ConflictA	17	（2）	Digital input functions are in conflict．Combinations marked with a＂．i．＂will cause an alarm．										
			Acc2／Dec2			Accel 2	2 Decel	2 Jog 1／2		Fwd		Rev Fw	Fwd／Rev
			Acc2／Dec2			邫	車						
			Accel 2 ．ì．										
			Decel 2		告								
			Jog 1／2							井．		我	
			Jog Fwd					单					寊
			Jog Rev					．t					．
			Fwd／Rev							\％	曾	4	
Dig In ConflictB	18	（2）	A digital Start input has been configured without a Stop input or other functions are in conflict．Combinations that conflict are marked with a＂ị．＂． and will cause an alarm．										
				Start	$\begin{aligned} & \text { Stop- } \\ & \text { CF } \end{aligned}$	Run	Run Fwd	Run Rev	$\begin{aligned} & \text { Jog } \\ & 1 / 2 \end{aligned}$	Jog Fw		Jog Rev	$\begin{array}{l\|l} \hline \text { Fwd/ } \\ \text { Rev } \end{array}$
			$\begin{aligned} & \hline \text { Start } \\ & \hline \text { Stop-CF } \\ & \hline \end{aligned}$			\＃	．${ }_{\text {\＃}}$	竞		京		革	
			Run	击			者	嗸		䧼		事	
			Run Fwd	单		单			苗				单
			Run Rev	禹		禹			事				串
			Jog 1／2				．ịi．	．it．					
			Jog Fwd	．${ }_{\text {\＃}}$		\＃							
			Jog Rev	．i．		．							
			Fwd／Rev				娄	点					
Dig In ConflictC	19	（2）	More than one physical input has been configured to the same input function． Multiple configurations are not allowed for the following input functions． Forward／Reverse Run Reverse Bus Regulation Mode B Speed Select 1 Jog Fowrard Acc2／Dec2 Speed Select 2 Jog Reverse Accel 2 Speed SSecect 3 Run Rune Run Forward Stop Mode B Decel 2										

Alarm	$\stackrel{1}{2}$	¢	Description
Drive OL Level 1	8	(1)	The calculated IGBT temperature requires a reduction in PWM frequency. If [Drive OL Mode] is disabled and the load is not reduced, an overload fault will eventually occur.
Drive OL Level 2	9	(1)	The calculated IGBT temperature requires a reduction in Current Limit. If [Drive OL Mode] is disabled and the load is not reduced, an overload fault will eventually occur.
FluxAmpsRef Rang	26	(2)	The calculated or measured Flux Amps value is not within the expected range. Verify motor data and rerun motor tests.
Ground Warn	15	(1)	Ground current has exceeded the level set in [Gnd Warn Level].
Home Not Set	34	(1)	Configurable alarm set in parameter 259, bit 17. When set to "1," this alarm is displayed when any of the following occur: - parameter 88 is set to " 7 " (Pos/Spd Prof) - \quad on power up and parameter $88=$ " 7 " - recall user sets and parameter $88=$ " 7 " Alarm is cleared when: - setting parameter 88 to a value other than " 7 " - reset defaults - parameter 259 , bit 17 is cleared - a digital input is configured as "Set Home" and input is True - parameter 705 , bit 9 is "Enabled" - parameter 700, bit 13 (At Home) is "Enabled" - position regulator will set this bit if device is "home"
In Phase Loss	13	(1)	The DC bus ripple has exceeded the level in [Phase Loss Level].
IntDBRes OvrHeat	6	(1)	The drive has temporarily disabled the DB regulator because the resistor temperature has exceeded a predetermined value.
IR Volts Range	25	(2)	The drive auto tuning default is "Calculate" and the value calculated for IR Drop Volts is not in the range of acceptable values. This alarm should clear when all motor nameplate data is properly entered.
Ixo VIt Rang	28	(2)	Motor leakage inductance is out of range.
Load Loss	14		Output torque current is below [Load Loss Level] for a time period greater than [Load Loss time].
MaxFreq Conflict	23	(2)	The sum of [Maximum Speed] and [Overspeed Limit] exceeds [Maximum Freq]. Raise [Maximum Freq] or lower [Maximum Speed] and/or [Overspeed Limit] so that the sum is less than or equal to [Maximum Freq].
Motor Thermistor	12		The value at the thermistor terminals has been exceeded.
Motor Type Cflct	21	(2)	[Motor Type] has been set to "Synchr Reluc" or "Synchr PM" and one or more of the following exist: - [Torque Perf Mode] = "Sensrls Vect," "SV Economize" or "Fan/Pmp V/Hz." - [Flux Up Time] is greater than 0.0 Secs. - [Speed Mode] is set to "Slip Comp." - [Autotune] = "Static Tune" or "Rotate Tune."
NP Hz Conflict	22	(2)	Fan/pump mode is selected in [Torq Perf Mode] and the ratio of [Motor NP Hertz] to [Maximum Freq] is greater than 26.
PI Config Conflict	52	(2)	Check [PI Configuration], both "AdjVoltTrim" \& "Torque Trim" are selected.

Alarm	\%	들	Description
Power Loss	3	(1)	Drive has sensed a power line loss.
Precharge Active	1	(1)	Drive is in the initial DC bus precharge state.
Prof Step Cflct	50	(2)	An error is detected in trend step(s). - Set if Sleep Mode is enabled. - Set if: any profile step uses "Encoder Incr" and/or "Enc Absolute" and [Motor Cntl Sel], parameter 53 is not set to "FVC Vector" and [Feedback Select], parameter 80 is not set to "Encoder" or "Simulator" and [Speed/Torque Mod], parameter 88 = "7" (Pos/Spd Prof). - a Step Type is configured for "Dig Input" and the Step Value is greater than 6, less than -6 , or zero or the digital input selected with [Digital lnx Sel] is not set to " 57 , Prof Input." - Cleared if none of the above occur.
PTC Conflict	31	(2)	PTC is enabled for Analog In 1, which is configured as a $0-20 \mathrm{~mA}$ current source in [Anlg In Config].
Sleep Config	29	(2)	Sleep/Wake configuration error. With [Sleep-Wake Mode] = "Direct," possible causes include: drive is stopped and [Wake Level] < [Sleep Level]. "Stop=CF," "Run," "Run Forward," or "Run Reverse." is not configured in [Digital Inx Sel].
Speed Ref Cflct	27	(2)	[Speed Ref x Sel] or [PI Reference Sel] is set to "Reserved".
Start At PowerUp	4	(1)	[Start At PowerUp] is enabled. Drive may start at any time within 10 seconds of drive powerup.
TB Man Ref Cflct	30	(2)	Occurs when: - "Auto/Manual" is selected (default) for [Digital In3 Sel], parameter 363 and - [TB Man Ref Sel], parameter 96 has been reprogrammed. No other use for the selected analog input may be programmed. Example: If [TB Man Ref Sel] is reprogrammed to "Analog In 2," all of the factory default uses for "Analog In 2" must be reprogramed (such as parameters 90, 117, 128 and 179). See also Auto/Manual Examples on page 1-22. To correct: - Verify/reprogram the parameters that reference an analog input or - Reprogram [Digital In3] to another function or "Unused."
TorqProve Cflct	49	(2)	When [TorqProve Cnfg] is enabled, [Motor Cntl Sel], [Feedback Select] and [Motor Fdbk Type] must be properly set (refer to page C-7).
UnderVoltage	2	(1)	The bus voltage has dropped below a predetermined value.
VHz Neg Slope	24	(2)	[Torq Perf Mode] = "Custom V/Hz" \& the V/Hz slope is negative.
Waking	11	(1)	The Wake timer is counting toward a value that will start the drive.

[^5]Table 4.D Alarm Cross Reference

No. ${ }^{(1)}$	Alarm
1	Precharge Active
2	UnderVoltage
3	Power Loss
4	Start At PowerUp
5	Analog in Loss
6	IntDBRes OvrHeat
8	Drive OL Level 1
9	Drive OL Level 2
10	Decel Inhibt
11	Waking
12	Motor Thermistor
13	In Phase Loss

No..$^{(1)}$	Alarm
14	Load Loss
15	Ground Warn
17	Dig In ConflictA
18	Dig In ConflictB
19	Dig In ConflictC
20	Bipolar Conflict
21	Motor Type Cflct
22	NP Hz Conflict
23	MaxFreq Conflict
24	VHz Neg Slope
25	IR Volts Range
26	FluxAmpsRef Rang

No. ${ }^{(1)}$	Alarm
27	Speed Ref Cflct
28	Ixo Vlt Rang
29	Sleep Config
30	TB Man Ref Cflct
31	PTC Conflict
32	Brake Slipped
33	AdjVoltRef Cflct
34	Home Not Set
49	Torq Prove Cflct
50	Prof Step Cflct
52	PI Config Conflict

${ }^{(1)}$ Alarm numbers not listed are reserved for future use.

Common Symptoms and Corrective Actions

Drive does not Start from Start or Run Inputs wired to the terminal block.

Cause(s)	Indication	Corrective Action
Drive is Faulted	Flashing red status light	Clear fault. - Press Stop - Cycle power - Set [Fault Clear] to 1 (See page 3-42) - "Clear Faults" on the HIM Diagnostic menu.
Incorrect input wiring. See pages 1-19 \& 1-20 for wiring examples. - 2 wire control requires Run, Run Forward, Run Reverse or Jog input. - 3 wire control requires Start and Stop inputs. - Jumper from terminal 25 to 26 is required.	None	Wire inputs correctly and/or install jumper.
Incorrect digital input programming. - Mutually exclusive choices have been made (i.e., Jog and Jog Forward). - 2 wire and 3 wire programming may be	None	Program [Digital Inx Sel] for correct inputs. (See page 3-55) Start or Run programming may be missing.
conflicting. - Exclusive functions (i.e, direction control) may have multiple inputs configured. - Stop is factory default and is not wired.	Flashing yellow status light and "Digln CflctB" indication on LCD HIM. [Drive Status 2] shows type 2 alarm(s).	Program [Digital Inx Sel] to resolve conflicts. (See page 3-55) Remove multiple selections for the same function. Install stop button to apply a signal at stop terminal.

Drive does not Start from HIM.

Cause(s)	Indication	Corrective Action
Drive is programmed for 2 wire	None	If 2 wire control is required, no action needed.
control. HIM Start button is		See [Save HIM Ref] on page 3-34.
disabled for 2 wire control.		If 3 wire control is required, program [Digital Inx Sel] for correct inputs. (See page 3-55)

Drive does not respond to changes in speed command.

Cause(s)	Indication	Corrective Action
No value is coming from the source of the command.	LCD HIM Status Line indicates "At Speed" and output is 0 Hz.	1. If the source is an analog input, check wiring and use a meter to check for presence of signal.
2.Check [Commanded Speed] for correct source. (See page 3-7)		
Incorrect reference source has been programmed.	None	3.Check [Speed Ref Source] for the source of the speed reference. (See page 3-39) Incorrect Reference source is being selected via remote device or digital inputs. Reprogram [Speed Ref A Sel] for correct source. (See page 3-19)

Motor and/or drive will not accelerate to commanded speed.

Cause(s)	Indication	Corrective Action
Acceleration time is excessive.	None	Reprogram [Accel Time x]. (See page 3-26)
Excess load or short acceleration times force the drive into current limit, slowing or stopping acceleration.	None	Check [Drive Status 2], bit 10 to see if the drive is in Current Limit. (See page 3-37)
Speed command source or value is Rot as expected.	None	Checess load or reprogram [Accel Time x].(See page 3-26)
Step for the proper Speed Command using Srivamming is preventing the driveugh 7 above from exceeding limiting values.	None	Check [Maximum Speed] (See page 3-17) and [Maximum Freq] (See page 3-10) to assure that speed is not limited by programming.

Motor operation is unstable.

Cause(s)	Indication	Corrective Action
Motor data was incorrectly entered or Autotune was not performed.	None	1. Correctly enter motor nameplate data. 2. Perform "Static" or "Rotate" Autotune procedure. (Param \#061, page 3-12)

Drive will not reverse motor direction.

Cause(s)	Indication	Corrective Action
Digital input is not selected for reversing control.	None	Check [Digital Inx Sel], page 3-55. Choose correct input and program for reversing mode.
Digital input is incorrectly wired.	None	Check input wiring. (See page 1-15)
Direction mode parameter is incorrectly programmed.	None	Reprogram [Direction Mode], page 3-33 for analog "Bipolar" or digital "Unipolar" control.
Motor wiring is improperly phased for reverse.	None	Switch two motor leads.
A bipolar analog speed command input is incorrectly wired or signal is absent.	None	1. Use meter to check that an analog input voltage is present. 2. Check wiring. (See page 1-15) Positive voltage commands forward direction. Negative voltage commands reverse direction.

Stopping the drive results in a Decel Inhibit fault.

Cause(s)	Indication	Corrective Action
The bus regulation feature is	Decel Inhibit fault	1. See Attention statement on page P-4.
enabled and is halting deceleration	screen.	2. Reprogram parameters 161/162 to
due to excessive bus voltage.	LCD Status Line	eliminate any "Adjust Freq" selection. Excess bus voltage is normally due to excessive regenerated energy or indicates
"Faulted".		
unstable AC line input voltages. and add a dynamic brake.		
Internal timer has halted drive operation. 4. Correct AC input line instability or add an isolation transformer.		

Testpoint Codes and Functions

Select testpoint with [Testpoint x Sel], parameters 234/236. Values can be viewed with [Testpoint x Data], parameters 235/237.

			Values			
No. ${ }^{(1)}$	Description					
	Units		Maximum	Default		
01	DPI Error Status	1	0	255	0	
02	Heatsink Temp	0.1 degC	-100.0	100.0	0	
03	Active Cur Limit	1	0	32767	0	
04	Active PWM Freq	1 Hz	2	10	4	
05	Life MegaWatt Hr(2)	0.0001 MWh	0	214748.3647	0	
06	Life Run Time	0.0001 Hrs	0	214748.3647	0	
07	Life Pwr Up Time	0.0001 Hrs	0	214748.3647	0	
08	Life Pwr Cycles	1	0	4294967295	0	
09	Life MW-HR Fract ${ }^{(2)}$	1	0	4294967295	0	
10	MW-HR Frac Unit ${ }^{(2)}$	1	0	4294967295	0	
11	MCB Life Time	0.0001 Hrs	0	214748.3647	0	
12	Raw Analog In 1	1	0		0	
13	Raw Analog In 2	1	0		0	
16	CS Msg Rx Cnt	1	0	65535	0	
17	CS Msg Tx Cnt	1	0	65535	0	
18	CS Timeout Cnt	1	0	255	0	
19	CS Msg Bad Cnt	1	0	255	0	
22	PC Msg Rx Cnt	1	0	65535	0	
23	PC Msg Tx Cnt	1	0	65535	0	
$24-29$	PC1-6 Timeout Cnt	1	0	255	0	
30	CAN BusOff Cnt	1	0	65535	0	
31	No. of Analog Inputs	1	0	x	0	
32	Raw Temperature	1	0	65535	0	
33	MTO Norm Mtr Amp	0.1 Amps	0	65535	0	
34	DTO-Cmd Frequency	1	0	420	0	
35	DTO-Cmd Cur Lim	0.1	0		0	
36	DTO-Cmd DC Hold	1	0	32767	0	
37	Control Bd Temp	0.1	0.0	60.0	0.0	

(1) Enter in [Testpoint x Sel].
(2) Use the equation below to calculate total Lifetime MegaWatt Hours.
$\left(\frac{\text { Value of Code } 9}{\text { Value of Code } 10} \times 0.1\right)+$ Value of Code $5=$ Total Lifetime MegaWatt Hours

Appendix A

Supplemental Drive Information

For information on . .	See page ..
Specifications	$\mathrm{A}-1$
Communication Configurations	$\mathrm{A}-5$
Output Devices	$\mathrm{A}-8$
Drive, Fuse \& Circuit Breaker Ratings	$\mathrm{A}-8$
Dimensions	$\mathrm{A}-17$
Frame Cross Reference	$\mathrm{A}-27$

Specifications

Category	Specification	
Agency Certification	$c \text { Uus }$	Listed to UL508C and CAN/CSA-C2.2 No. 14-M91.
	$C E$	Marked for all applicable European Directives ${ }^{(1)}$ EMC Directive (89/336/EEC) EN 61800-3 Adjustable Speed electrical power drive systems Low Voltage Directive (73/23/EEC) EN 50178 Electronic Equipment for use in Power Installations
	$\mathrm{C}_{\mathrm{N} 223}$	Certified to AS/NZS, 1997 Group 1, Class A.

The drive is also designed to meet the following specifications:
NFPA 70 - US National Electrical Code
NEMA ICS 3.1 - Safety standards for Construction and Guide for Selection, Installation and Operation of Adjustable Speed Drive Systems.
IEC 146 - International Electrical Code.
${ }^{(1)}$ Applied noise impulses may be counted in addition to the standard pulse train causing erroneously high [Pulse Freq] readings.

Category	Specification						
Protection	Drive	$\begin{aligned} & 200- \\ & 208 \mathrm{~V} \end{aligned}$	240 V	$\begin{aligned} & 380 / \\ & 400 \mathrm{~V} \end{aligned}$	480 V	600 V Frames 0-4	$\begin{aligned} & \hline 600 / 690 \mathrm{~V} \\ & \text { Frames 5-6 } \end{aligned}$
	AC Input Overvoltage Trip:	285VAC	285VAC	570VAC	570VAC	716VAC	818VAC
	AC Input Undervoltage Trip:	120VAC	138VAC	233VAC	280VAC	345VAC	345VAC
	Bus Overvoltage Trip:	405VDC	405VDC	810VDC	810VDC	1013VDC	1162VAC
	Bus Undervoltage Shutoff/Fault:	153VDC	153VDC	305VDC	305VDC	381VDC	437VAC
	Nominal Bus Voltage:	281VDC	324VDC	540VDC	648VDC	810VDC	932VAC
	All Drives						
	Heat Sink Thermistor:	Monitored by microprocessor overtemp trip					
	Drive Overcurrent Trip Software Overcurrent Trip: Hardware Overcurrent Trip:	200\% of rated current (typical) $220-300 \%$ of rated current (dependent on drive rating)					
	Line transients:	up to 6000 volts peak per IEEE C62.41-1991					

Category	Specification				
Protection (continued)	Control Logic Noise Immunity:	Showering arc transients up to 1500 V peak			
	Power Ride-Thru:	15 milliseconds at full load			
	Logic Control Ride-Thru:	0.5 seconds minimum, 2 seconds typical			
	Ground Fault Trip:	Phase-to-ground on drive output			
	Short Circuit Trip:	Phase-to-phase on drive output			
Environment	Altitude:	1000 m (3300 ft) max. without derating			
	Maximum Surrounding Air Temperature without Derating: IP20, NEMA Type 1:	0 to 50 degrees C (32 to 122 degrees F), typical. See pages $\mathrm{A}-9$ through A-14 for exceptions.			
	Storage Temperature (all const.):	-40 to 70 degrees C (-40 to 158 degrees F)			
	Atmosphere:	Important: Drive must not be installed in an area where the ambient atmosphere contains volatile or corrosive gas, vapors or dust. If the drive is not going to be installed for a period of time, it must be stored in an area where it will not be exposed to a corrosive atmosphere.			
	Relative Humidity:	5 to 95\% non-condensing			
	Shock:	15 G peak for $11 \mathrm{~ms} \mathrm{duration} \mathrm{(} \pm 1.0 \mathrm{~ms}$)			
	Vibration:	0.152 mm (0.006 in.) displacement, 1G peak			
	Sound:	Frame	Fan Speed	Sound Level	Note: Sound pressure level is measured at 2 meters.
		0	30 CFM	58 dB	
		1	30 CFM	59 dB	
		2	50 CFM	57 dB	
		3	120 CFM	61 dB	
		4	190 CFM	59 dB	
			200 CFM	71 dB	
		6	300 CFM	72 dB	
Electrical	Voltage Tolerance:	See page $\underline{\underline{C-40}}$ for full power and operating range.			
	Frequency Tolerance:	$47-63 \mathrm{~Hz}$.			
	Input Phases:	Three-phase input provides full rating for all drives. Single-phase operation provides 50% of rated current.			
	Displacement Power Factor:	0.98 across entire speed range.			
	Efficiency:	97.5\% at rated amps, nominal line volts.			
	Maximum Short Circuit Rating:	200,000 Amps symmetrical.			
	Actual Short Circuit Rating:	Determined by AIC rating of installed fuse/circuit breaker.			
Control	Method:	Sine coded PWM with programmable carrier frequency. Ratings apply to all drives (refer to the Derating Guidelines in the PowerFlex Reference Manual). The drive can be supplied as 6 pulse or 12 pulse in a configured package.			
	Carrier Frequency:	$2,4,8$ \& 10 kHz . Drive rating based on 4 kHz (see pages A-9 through A-14 for exceptions).			
	Output Voltage Range:	0 to rated motor voltage			
	Output Frequency Range:	0 to 420 Hz			
	Frequency Accuracy Digital Input: Analog Input:	Within $\pm 0.01 \%$ of set output frequency. Within $\pm 0.4 \%$ of maximum output frequency.			

Category	Specification	
Control (continued)	Frequency Control:	Speed Regulation - w/Slip Compensation (Volts per Hertz Mode) 0.5% of base speed across $40: 1$ speed range 40:1 operating range $10 \mathrm{rad} / \mathrm{sec}$ bandwidth
		Speed Regulation - w/Slip Compensation (Sensorless Vector Mode) 0.5% of base speed across $80: 1$ speed range 80:1 operating range $20 \mathrm{rad} / \mathrm{sec}$ bandwidth
		Speed Regulation - w/Feedback (Sensorless Vector Mode) 0.1% of base speed across $80: 1$ speed range 80:1 operating range $20 \mathrm{rad} / \mathrm{sec}$ bandwidth
	Speed Control:	Speed Regulation - w/o Feedback (Vector Control Mode) 0.1% of base speed across 120:1 speed range 120:1 operating range $50 \mathrm{rad} / \mathrm{sec}$ bandwidth
		Speed Regulation - w/Feedback (Vector Control Mode) 0.001\% of base speed across 120:1 speed range 1000:1 operating range $250 \mathrm{rad} / \mathrm{sec}$ bandwidth
	Torque Regulation:	Torque Regulation - w/o Feedback $\pm 5 \%, 600 \mathrm{rad} / \mathrm{sec}$ bandwidth
		Torque Regulation - w/Feedback $\pm 2 \%, 2500 \mathrm{rad} / \mathrm{sec}$ bandwidth
	Selectable Motor Control:	Sensorless Vector with full tuning. Standard V/Hz with full custom capability and Vector Control.
	Stop Modes:	Multiple programmable stop modes including - Ramp, Coast, DC-Brake, Ramp-to-Hold and S-curve.
	Accel/Decel:	Two independently programmable accel and decel times. Each time may be programmed from $0-3600$ seconds in 0.1 second increments.
	Intermittent Overload:	110% Overload capability for up to 1 minute 150% Overload capability for up to 3 seconds
	Current Limit Capability:	Proactive Current Limit programmable from 20 to 160% of rated output current. Independently programmable proportional and integral gain.
	Electronic Motor Overload Protection:	Class 10 protection with speed sensitive response. Investigated by U.L. to comply with N.E.C. Article 430. U.L. File E59272, volume 12.
Encoder	Type:	Incremental, dual channel
	Supply:	$12 \mathrm{~V}, 250 \mathrm{~mA} .12 \mathrm{~V}, 10 \mathrm{~mA}$ minimum inputs isolated with differential transmitter, 250 kHz maximum.
	Quadrature:	$90^{\circ}, \pm 27$ degrees at 25 degrees C.
	Duty Cycle:	50\%, +10\%
	Requirements:	Encoders must be line driver type, quadrature (dual channel) or pulse (single channel), 8-15V DC output, single-ended or differential and capable of supplying a minimum of 10 mA per channel. Maximum input frequency is 250 kHz . The Encoder Interface Board accepts 12 V DC square-wave with a minimum high state voltage of 7.0V DC (12 volt encoder). Maximum low state voltage is 0.4 V DC.

PowerFlex 700 Watts Loss (Rated Load, Speed \& PWM) ${ }^{(1)}$

Voltage	ND HP	External Watts	Internal Watts	Total Watts Loss
240V	$\begin{aligned} & \hline 0.5 \\ & 1 \\ & 2 \\ & 3 \\ & 5 \\ & 5 \\ & 7.5 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 75 \\ & 100 \end{aligned}$	9 22 38 57 97 134 192 276 354 602 780 860 1132 1296 1716 1837	$\begin{array}{\|l\|} \hline 37 \\ 39 \\ 39 \\ 41 \\ 82 \\ 74 \\ 77 \\ 92 \\ 82 \\ 96 \\ 96 \\ \hline 107 \\ 138 \\ 200 \\ 277 \\ 418 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 46 \\ 61 \\ 77 \\ 98 \\ 179 \\ 208 \\ 269 \\ 368 \\ 436 \\ 698 \\ 876 \\ 967 \\ 1270 \\ 1496 \\ 1993 \\ 2255 \end{array}$
480V	$\begin{aligned} & \hline 0.5 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 5 \\ & 7.5 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 75 \\ & 100 \\ & 125 \\ & 150 \\ & 200 \end{aligned}$	11 19 31 46 78 115 134 226 303 339 357 492 568 722 821 1130 1402 1711 1930	42 44 45 46 87 79 84 99 91 102 103 117 148 207 286 397 443 493 583	53 63 76 93 164 194 218 326 394 441 459 610 717 930 1107 1479 1845 2204 2512
600V	$\begin{aligned} & \hline 0.5 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 5 \\ & 7.5 \\ & 10 \\ & 15 \\ & 20 \\ & 25 \\ & 30 \\ & 40 \\ & 50 \\ & 60 \\ & 75 \\ & 100 \\ & 125 \\ & 150 \end{aligned}$	9 14 25 41 59 83 109 177 260 291 324 459 569 630 1053 1467 1400 1668	37 34 40 42 42 83 75 77 93 83 95 95 109 141 195 308 407 500 612	46 54 65 83 142 157 186 270 343 385 419 569 710 825 1361 1874 1900 2280

[^6]
Communication Configurations

Typical Programmable Controller Configurations

Important: If block transfers are programmed to continuously write information to the drive, care must be taken to properly format the block transfer. If attribute 10 is selected for the block transfer, values will be written only to RAM and will not be saved by the drive. This is the preferred attribute for continuous transfers. If attribute 9 is selected, each program scan will complete a write to the drives non-volatile memory (EEprom). Since the EEprom has a fixed number of allowed writes, continuous block transfers will quickly damage the EEprom. Do Not assign attribute 9 to continuous block transfers. Refer to the individual communications adapter User Manual for additional details.

Logic Command/Status Words

Figure A. 1 Logic Command Word

Logic Bits													Command	Description
15	14	13	12	11	10	8	8	6	54	3	2	10		
												x	Stop ${ }^{(1)}$	$\begin{aligned} & 0=\text { Not Stop } \\ & 1=\text { Stop } \end{aligned}$
													Start ${ }^{(1)(2)}$	$\begin{aligned} & 0=\text { Not Start } \\ & 1=\text { Start } \end{aligned}$
											x		Jog	$\begin{aligned} & 0=\text { Not Jog } \\ & 1=\text { Jog } \\ & \hline \end{aligned}$
										x			Clear Faults	0 = Not Clear Faults 1 = Clear Faults
													Direction	$\begin{aligned} & 00=\text { No Command } \\ & 01=\text { Forward Command } \\ & 10=\text { Reverse Command } \\ & 11=\text { Hold Present Direction } \end{aligned}$
								x					Local Control	$0=$ No Local Control 1 = Local Control
							x						MOP Increment	$\begin{aligned} & 0=\text { Not Increment } \\ & 1=\text { Increment } \end{aligned}$
													Accel Rate	$\begin{aligned} & 00=\text { No Command } \\ & 01=\text { Use Accel Time } 1 \\ & 10=\text { Use Accel Time } 2 \\ & 11=\text { Use Present Time } \end{aligned}$
				x	x								Decel Rate	$\begin{aligned} & 00=\text { No Command } \\ & 01=\text { Use Decel Time } 1 \\ & 10=\text { Use Decel Time } 2 \\ & 11=\text { Use Present Time } \end{aligned}$
	x	X	x										Reference Select ${ }^{(3)}$	$\begin{aligned} & 000=\text { No Command } \\ & 001=\text { Ref. } 1 \text { (Ref A Select) } \\ & 010=\text { Ref. } 2 \text { (Ref B Select) } \\ & 011=\text { Ref. } 3 \text { (Preset 3) } \\ & 100=\text { Ref. } 4 \text { (Preset 4) } \\ & 101=\text { Ref. } 5 \text { (Preset 5) } \\ & 110=\text { Ref. } 6 \text { (Preset 6) } \\ & 111=\text { Ref. } 7 \text { (Preset 7) } \end{aligned}$
x													MOP Decrement	$\begin{aligned} & 0=\text { Not Decrement } \\ & 1=\text { Decrement } \end{aligned}$

(1) A " $0=$ Not Stop" condition (logic 0) must first be present before a " $1=$ Start" condition will start the drive. The Start command acts as a momentary Start command. A "1" will start the drive, but returning to " 0 " will not stop the drive.
(2) This Start will not function if a digital input (parameters 361-366) is programmed for 2-Wire Control (option 7, 8 or 9).
(3) This Reference Select will not function if a digital input (parameters 361-366) is programmed for "Speed Sel 1, 2 or 3" (option 15, 16 or 17). Note that Reference Selection is "Exclusive Ownership" see [Reference Owner] on page 3-49.

Figure A. 2 Logic Status Word

Logic Bits														Status	Description
15	14	13	12	11	10	9	87	6	5	4 3	32	1	0		
													X	Ready	$\begin{aligned} & \hline 0=\text { Not Ready } \\ & 1=\text { Ready } \\ & \hline \end{aligned}$
												x		Active	$\begin{aligned} & 0=\text { Not Active } \\ & 1=\text { Active } \end{aligned}$
											x			Command Direction	$\begin{aligned} & 0=\text { Reverse } \\ & 1=\text { Forward } \end{aligned}$
											X			Actual Direction	$\begin{aligned} & \hline 0=\text { Reverse } \\ & 1=\text { Forward } \end{aligned}$
										X				Accel	$\begin{aligned} & 0=\text { Not Accelerating } \\ & 1=\text { Accelerating } \end{aligned}$
									x					Decel	$\begin{aligned} & 0=\text { Not Decelerating } \\ & 1=\text { Decelerating } \end{aligned}$
								X						Alarm	$\begin{aligned} & 0=\text { No Alarm } \\ & 1=\text { Alarm } \end{aligned}$
							X							Fault	$\begin{aligned} & 0=\text { No Fault } \\ & 1=\text { Fault } \end{aligned}$
							X							At Speed	$\begin{aligned} & 0=\text { Not At Reference } \\ & 1=\text { At Reference } \end{aligned}$
				X	X	X								Local Control ${ }^{(1)}$	$\begin{aligned} & 000=\text { Port } 0(\text { TB }) \\ & 001=\text { Port } 1 \\ & 010=\text { Port } 2 \\ & 011=\text { Port } 3 \\ & 100=\text { Port } 4 \\ & 101=\text { Port } 5 \\ & 110=\text { Reserved } \\ & 111=\text { No Local } \end{aligned}$
X	X	X	X											Reference Source	$\begin{aligned} & 0000=\text { Ref A Auto } \\ & 0001=\text { Ref B Auto } \\ & 0010=\text { Preset } 2 \text { Auto } \\ & 0011=\text { Preset } 3 \text { Auto } \\ & 0100=\text { Preset } 4 \text { Auto } \\ & 0101=\text { Preset } 5 \text { Auto } \\ & 0110=\text { Preset } 6 \text { Auto } \\ & 0111=\text { Preset } 7 \text { Auto } \\ & 1000=\text { Term Blk Manual } \\ & 1001=\text { DPI } 1 \text { Manual } \\ & 1010=\text { DPI } 2 \text { Manual } \\ & 1011=\text { DPI } 3 \text { Manual } \\ & 1100=\text { DPI } 4 \text { Manual } \\ & 1101=\text { DPI } 5 \text { Manual } \\ & 1110=\text { Reserved } \\ & 1111=\text { Jog Ref } \\ & \hline \end{aligned}$

(1) See "Owners" on page 3-47 for further information.

Output Devices

Common mode cores are internal to the drive. For information on output devices such as output contactors, cable terminators and output reactors refer to the PowerFlex Reference Manual.

Drive, Fuse \& Circuit Breaker Ratings

The tables on the following pages provide drive ratings (including continuous, 1 minute and 3 second) and recommended AC line input fuse and circuit breaker information. Both types of short circuit protection are acceptable for UL and IEC requirements. Sizes listed are the recommended sizes based on 40 degree C and the U.S. N.E.C. Other country, state or local codes may require different ratings.

Fusing

If fuses are chosen as the desired protection method, refer to the recommended types listed below. If available amp ratings do not match the tables provided, the closest fuse rating that exceeds the drive rating should be chosen.

- IEC - BS88 (British Standard) Parts 1 \& 2 ${ }^{(1)}$, EN60269-1, Parts 1 \& 2 , type gG or equivalent should be used.
- UL - UL Class CC, T, RK1 or J must be used.

Circuit Breakers

The "non-fuse" listings in the following tables include both circuit breakers (inverse time or instantaneous trip) and 140M Self-Protecting Motor Starters. If one of these is chosen as the desired protection method, the following requirements apply.

- IEC and UL - Both types of devices are acceptable for IEC and UL installations.
(1) Typical designations include, but may not be limited to the following; Parts $1 \& 2$: AC, $A D, B C, B D, C D, D D, E D, E F S, E F, F F, F G, G F, G G, G H$.

Table A.A 208 Volt AC Input Protection Devices (See page A-14 for Notes)

Drive Catalog		HP Rating		PWM Freq. kHz	$\begin{array}{\|l} \text { Temp. } \\ \hline{ }^{\circ} \mathrm{C} \\ \hline \end{array}$	Input Ratings		Output Amps			Dual Element Time Delay Fuse		Non-Time Delay Fuse		Circuit Breaker(3) Max. ${ }^{(8)}$	Motor Circuit Protector ${ }^{(4)}$ Max. ${ }^{(8)}$	140M Motor Starter with Adjustable Current Range ${ }^{(5)(6)}$			
Number		ND	HD			Amps	kVA	Cont.	1 Min .	3 Sec.	Min. ${ }^{(1)}$	Max. ${ }^{(2)}$	Min. ${ }^{(1)}$	Max. ${ }^{(2)}$			Available Catalog Numbers - 140 . . ${ }^{(7)}$			
208 Volt AC Input																				
20BB2P2	0	0.5	0.33	4	50	1.9	0.7	2.5	2.8	3.8	3	6	3	10	15	3	M-C2E-B25	M-D8E-B25	-	-
20BB4P2	0	1	0.75	4	50	3.7	1.3	4.8	5.6	7.0	6	10	6	17.5	15	7	M-C2E-B63	M-D8E-B63	-	-
20BB6P8	1	2	1.5	4	50	6.8	2.4	7.8	10.4	13.8	10	15	10	30	30	15	M-C2E-C10	M-D8E-C10	M-F8E-C10	-
20BB9P6	1	3	2	4	50	9.5	3.4	11	12.1	17	12	20	12	40	40	15	M-C2E-C16	M-D8E-C16	M-F8E-C16	-
20 BB 015	1	5	3	4	50	15.7	5.7	17.5	19.3	26.3	20	35	20	70	70	30	M-C2E-C20	M-D8E-C20	M-F8E-C20	-
20BB022	1	7.5	5	4	50	23.0	8.3	25.3	27.8	38	30	50	30	100	100	30	M-C2E-C25	M-D8E-C25	M-F8E-C25	-CMN-2500
20 BB 028	2	10	7.5	4	50	29.6	10.7	32.2	38	50.6	40	70	40	125	125	50	-	-	M-F8E-C32	-CMN-4000
20 BB 042	3	15	10	4	50	44.5	16.0	48.3	53.1	72.5	60	100	60	175	175	70	-	-	M-F8E-C45	-CMN-6300
$20 \mathrm{BB052}$	3	20	15	4	50	51.5	17.1	56	64	86	80	125	80	200	200	100	-	-	-	-CMN-6300
20BB070	4	25	20	4	50	72	25.9	78.2	93	124	90	175	90	300	300	100	-	-	-	-CMN-9000
20 BB 080	4	30	25	4	50	84.7	30.5	92	117	156	110	200	110	350	350	150	-	-	-	-CMN-9000
20BB104	5	40	-	4	$50^{(9)}$	113	40.7	120	132	175	150	250	150	475	350	150	-	-	-	-
		-	30	4	$50^{(9)}$	84.7	30.5	92	138	175	125	200	125	350	300	150	-	-	-	-CMN-9000
20BB130	5	50	-	4	$50^{(9)}$	122	44.1	130	143	175	175	275	175	500	375	250	-	-	-	-
		-	40	4	$50^{(9)}$	98	35.3	104	156	175	125	225	125	400	300	150	-	-	-	-
20BB154	6	60	-	4	50	167	60.1	177	195	266	225	350	225	500	500	250	-	-	-	-
		-	50	4	50	141	50.9	150	225	300	200	300	200	500	450	250	-	-	-	-
20 BB 192	6	75	-	4	50	208	75.0	221	243	308	300	450	300	600	600	400	-	-	-	-
		-	60	4	50	167	60.1	177	266	308	225	350	225	500	500	250	-	-	-	-
20BB260	6	100	-	2	45	255	91.9	260	286	390	250	450	250	600	600	400	-	-	-	-
		-	75	2	50	199	71.7	205	305	410	350	550	350	750	750	400	-	-	-	-

Table A.B 240 Volt AC Input Protection Devices (See page A-14 for Notes)

Drive Catalog Number		HP Rating		PWM Freq. kHz	Temp. ${ }^{\circ} \mathrm{C}$	Input Ratings		Output Amps			Dual Element Time Delay Fuse		Non-Time Delay Fuse		Circuit Breaker (3)$\|$	Motor Circuit Protector ${ }^{(4)}$ Max. ${ }^{(8)}$	140M Motor Starter with Adjustable Current Range ${ }^{(5)(6)}$			
		ND	HD			Amps	kVA	Cont.	1 Min .	3 Sec.	Min. ${ }^{(1)}$	Max. ${ }^{(2)}$	Min. ${ }^{(1)}$	Max. ${ }^{(2)}$			Available Catalog Numbers - 140 . . (7)			
240 Volt AC Input																				
20BB2P2	0	0.5	0.33	4	50	1.7	0.7	2.2	2.4	3.3	3	6	3	10	15	3	M-C2E-B25	M-D8E-B25	-	-
20BB4P2	0	1	0.75	4	50	3.3	1.4	4.2	4.8	6.4	5	8	5	15	15	7	M-C2E-B63	M-D8E-B63	-	-
20BB6P8	1	2	1.5	4	50	5.9	2.4	6.8	9	12	10	15	10	25	25	15	M-C2E-C10	M-D8E-C10	M-F8E-C10	-
20BB9P6	1	3	2	4	50	8.3	3.4	9.6	10.6	14.4	12	20	12	35	35	15	M-C2E-C10	M-D8E-C10	M-F8E-C10	-
20BB015	1	5	3	4	50	13.7	5.7	15.3	16.8	23	20	30	20	60	60	30	M-C2E-C16	M-D8E-C16	M-F8E-C16	-
20 BB 022	1	7.5	5	4	50	19.9	8.3	22	24.2	33	25	50	25	80	80	30	M-C2E-C25	M-D8E-C25	M-F8E-C25	-CMN-2500
20BB028	2	10	7.5	4	50	25.7	10.7	28	33	44	35	60	35	100	100	50	-	-	M-F8E-C32	-CMN-4000
20BB042	3	15	10	4	50	38.5	16.0	42	46.2	63	50	90	50	150	150	50	-	-	M-F8E-C45	-CMN-6300
20BB052	3	20	15	4	50	47.7	19.8	52	63	80	60	100	60	200	200	100	-	-	-	-CMN-6300
20BB070	4	25	20	4	50	64.2	26.7	70	78	105	90	150	90	275	275	100	-	-	-	-CMN-9000
20BB080	4	30	25	4	50	73.2	30.5	80	105	140	100	180	100	300	300	100	-	-	-	-CMN-9000
20BB104	5	40	-	4	$50^{(9)}$	98	40.6	104	115	175	125	225	125	400	300	150	-	-	-	-
		-	30	4	$50^{(9)}$	73	30.5	80	120	160	100	175	100	300	300	100	-	-	-	-CMN-9000
20BB130	5	50	-	4	$50^{(9)}$	122	50.7	130	143	175	175	275	175	500	375	250	-	-	-	-
		-	40	4	$50^{(9)}$	98	40.6	104	156	175	125	225	125	400	300	150	-	-	-	-
20BB154	6	60	-	4	50	145	60.1	154	169	231	200	300	200	600	450	250	-	-	-	-
		-	50	4	50	122	50.7	130	195	260	175	275	175	500	375	250	-	-	-	-
20BB192	6	75	-	4	50	180	74.9	192	211	288	225	400	225	600	575	250	-	-	-	-
		-	60	4	50	145	60.1	154	231	308	200	300	200	600	450	250	-	-	-	-
20BB260	6	100	-	2	45	233	96.7	260	286	390	250	450	250	600	600	400	-	-	-	-
		-	75	2	50	169	70.1	205	305	410	350	550	350	750	750	400	-	-	-	-

Table A.C 400 Volt AC Input Protection Devices (See page A-14 for Notes)

Drive Catalog Number		kW Rating		PWM Freq. kHz	Temp.${ }^{\circ} \mathrm{C}$	Input Ratings		Output Amps			Dual Element Time Delay Fuse		Non-Time Delay Fuse		Circuit Breaker ${ }^{(3)}$ Max. ${ }^{(8)}$	Motor Circuit Protector ${ }^{(4)}$ Max. ${ }^{(8)}$	140M Motor Starter with Adjustable Current Range ${ }^{(5)(6)}$			
		ND	HD			Amps	kVA	Cont.	1 Min.	3 Sec.	Min. ${ }^{(1)}$	Max. ${ }^{(2)}$	Min. ${ }^{(1)}$	Max. ${ }^{(2)}$			Available Catalog Numbers - 140 . . . 7)			
400 Volt AC Input																				
20BC1P3	0	0.37	0.25	4	50	1.1	0.77	1.3	1.4	1.9	3	3	3	6	15	3	M-C2E-B16	-	-	-
20BC2P1	0	0.75	0.55	4	50	1.8	1.3	2.1	2.4	3.2	3	6	3	8	15	3	M-C2E-B25	M-D8E-B25	-	-
20BC3P5	0	1.5	0.75	4	50	3.2	2.2	3.5	4.5	6.0	6	7	6	12	15	7	M-C2E-B40	M-D8E-B40	-	-
20BC5P0	0	2.2	1.5	4	50	4.6	3.2	5.0	5.5	7.5	6	10	6	20	20	7	M-C2E-B63	M-D8E-B63	-	-
20BC8P7	0	4	2.2	4	50	7.9	5.5	8.7	9.9	13.2	15	17.5	15	30	30	15	M-C2E-C10	M-D8E-C10	M-F8E-C10	-
20BC011	0	5.5	4	4	50	10.8	7.5	11.5	13	17.4	15	25	15	45	45	15	M-C2E-C16	M-D8E-C16	M-F8E-C16	-
20BC015	1	7.5	5.5	4	50	14.4	10.0	15.4	17.2	23.1	20	30	20	60	60	20	M-C2E-C20	M-D8E-C20	M-F8E-C20	-
20BC022	1	11	7.5	4	50	20.6	14.3	22	24.2	33	30	45	30	80	80	30	M-C2E-C25	M-D8E-C25	M-F8E-C25	-
20BC030	2	15	11	4	50	28.4	19.7	30	33	45	35	60	35	120	120	50	-	-	M-F8E-C32	-
20BC037	2	18.5	15	4	50	35.0	24.3	37	45	60	45	80	45	125	125	50	-	-	M-F8E-C45	-
20BC043	3	22	18.5	4	50	40.7	28.2	43	56	74	60	90	60	150	150	60	-	-	-	-
20BC056	3	30	22	4	50	53	36.7	56	64	86	70	125	70	200	200	100	-	-	-	-
20BC072	3	37	30	4	50	68.9	47.8	72	84	112	90	150	90	250	250	100	-	-	-	-
20BC085	4	45	-	4	45	81.4	56.4	85	94	128	110	200	110	300	300	150	-	-	-	-
		-	37	4	45	68.9	47.8	72	108	144	90	175	90	275	300	100	-	-	-	-
20BC105	5	55	-	4	$50^{(9)}$	100.5	69.6	105	116	158	125	225	125	400	300	150	-	-	-	-
		-	45	4	$50^{(9)}$	81.4	56.4	85	128	170	110	175	110	300	300	150	-	-	-	-
20 BC 125	5	55	-	4	$50^{(9)}$	121.1	83.9	125	138	163	150	275	150	500	375	250	-	-	-	-
		-	45	4	$50^{(9)}$	91.9	63.7	96	144	168	125	200	125	375	375	150	-	-	-	-
20BC140	5	75	-	4	$40^{(9)}$	136	93.9	140	154	190	200	300	200	400	400	250	-	-	-	-
		-	55	4	$40^{(9)}$	101	69.6	105	157	190	150	225	150	300	300	150	-	-	-	-
20BC170	6	90	-	4	50	164	126	170	187	255	250	375	250	600	500	250	-	-	-	-
		-	75	4	50	136	103	140	210	280	200	300	200	550	400	250	-	-	-	-
20BC205	6	110	-	4	40	199	148	205	220	289	250	450	250	600	600	400	-	-	-	-
		-	90	4	40	164	126	170	255	313	250	375	250	600	500	250	-	-	-	-
20BC260	6	132	-	2	45	255	177	260	286	390	350	550	350	750	750	400	-	-	-	-
		-	110	2	50	199	138	205	308	410	250	450	250	600	600	400	-	-	-	-

Table A.D 480 Volt AC Input Protection Devices (See page A-14 for Notes)

Drive Catalog	$\begin{array}{\|l\|l} \text { HP } \\ \underset{\sim}{0} & \begin{array}{l} \text { Rating } \\ \hline \end{array} \\ \hline \end{array}$			PWM Freq. kHz	$\begin{array}{\|l} \hline \text { Temp. } \\ \hline{ }^{\circ} \mathrm{C} \\ \hline \end{array}$	Input Ratings		Output Amps			Dual Element Time Delay Fuse		Non-Time Delay Fuse		Circuit Breaker ${ }^{(3)}$ Max. ${ }^{(8)}$	Motor Circuit Protector ${ }^{(4)}$ Max. ${ }^{(8)}$	140M Motor Starter with Adjustable Current Range ${ }^{(5) /(6)}$			
Number	立	ND	HD			Amps	kVA	Cont.	1 Min.	3 Sec.	Min. ${ }^{(1)}$	Max. ${ }^{(2)}$	Min. ${ }^{(1)}$	Max. ${ }^{(2)}$			Available Catalog Numbers - 140 . . . ${ }^{(7)}$			
480 Volt AC Input																				
20BD1P1	0	0.5	0.33	4	50	0.9	0.7	1.1	1.2	1.6	3	3	3	6	15	3	M-C2E-B16	-	-	-
20BD2P1	0	1	0.75	4	50	1.6	1.4	2.1	2.4	3.2	3	6	3	8	15	3	M-C2E-B25	-	-	-
20BD3P4	0	2	1.5	4	50	2.6	2.2	3.4	4.5	6.0	4	8	4	12	15	7	M-C2E-B40	M-D8E-B40	-	-
20BD5P0	0	3	2	4	50	3.9	3.2	5.0	5.5	7.5	6	10	6	20	20	7	M-C2E-B63	M-D8E-B63	-	-
20BD8P0	0	5	3	4	50	6.9	5.7	8.0	8.8	12	10	15	10	30	30	15	M-C2E-C10	M-D8E-C10	M-F8E-C10	-
20 BD 011	0	7.5	5	4	50	9.5	7.9	11	12.1	16.5	15	20	15	40	40	15	M-C2E-C16	M-D8E-C16	M-F8E-C16	-
20BD014	1	10	7.5	4	50	12.5	10.4	14	16.5	22	17.5	30	17.5	50	50	20	M-C2E-C16	M-D8E-C16	M-F8E-C16	-
20BD022	1	15	10	4	50	19.9	16.6	22	24.2	33	25	50	25	80	80	30	M-C2E-C25	M-D8E-C25	M-F8E-C25	-CMN-2500
20BD027	2	20	15	4	50	24.8	20.6	27	33	44	35	60	35	100	100	50	-	-	M-F8E-C32	-CMN-4000
20BD034	2	25	20	4	50	31.2	25.9	34	40.5	54	40	70	40	125	125	50	-	-	M-F8E-C45	-CMN-4000
20BD040	3	30	25	4	50	36.7	30.5	40	51	68	50	90	50	150	150	50	-	-	M-F8E-C45	-CMN-4000
20 BD 052	3	40	30	4	50	47.7	39.7	52	60	80	60	110	60	200	200	70	-	-	-	-CMN-6300
20BD065	3	50	40	4	50	59.6	49.6	65	78	104	80	125	80	250	250	100	-	-	-	-CMN-9000
20BD077	4	60	-	4	50	72.3	60.1	77	85	116	100	170	100	300	300	100	-	-	-	-CMN-9000
		-	50	4	50	59.6	49.6	65	98	130	80	125	80	250	250	100	-	-	-	-CMN-9000
20BD096	5	75	-	4	$50^{(9)}$	90.1	74.9	96	106	144	125	200	125	350	350	125	-	-	-	-
		-	60	4	50(9)	72.3	60.1	77	116	154	100	170	100	300	300	100	-	-	-	-CMN-9000
20BD125	5	100	-	4	$50^{(9)}$	117	97.6	125	138	163	150	250	150	500	375	150	-	-	-	-
		-	75	4	$50^{(9)}$	90.1	74.9	96	144	168	125	200	125	350	350	125	-	-	-	-
20BD156	6	125	-	4	50	147	122	156	172	234	200	350	200	600	450	250	-	-	-	-
		-	100	4	50	131	109	125	188	250	175	250	175	500	375	250	-	-	-	-
20BD180	6	150	-	4	50	169	141	180	198	270	225	400	225	600	500	250	-	-	-	-
		-	125	4	50	147	122	156	234	312	200	350	200	600	450	250	-	-	-	-
20BD248	6	200	-	2	45	233	194	248	273	372	300	550	300	700	700	400	-	-	-	-
		-	150	2	50	169	141	180	270	360	225	400	225	600	500	250	-	-	-	-

Table A.E 600 Volt AC Input Protection Devices (See page A-14 for Notes)

Drive Catalog		HP Rating		PWM Freq. kHz	$\begin{aligned} & \text { Temp. } \\ & \hline{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Input Ratings		Output Amps			Dual Element Time Delay Fuse		Non-Time Delay Fuse		$\begin{array}{\|l} \begin{array}{l} \text { Circuit } \\ \text { Breaker } \end{array}{ }^{(3)} \end{array}$	Motor Circuit Protector ${ }^{(4)}$ Max. ${ }^{(8)}$	140M Motor Starter with Adjustable Current Range ${ }^{(5) /(6)}$			
Number		ND	HD			Amps	kVA	Cont.	1 Min.	3 Sec.	Min. ${ }^{(1)}$	Max. ${ }^{(2)}$	Min. ${ }^{11}$	Max. ${ }^{(2)}$			Available Catalog Numbers - 140 . . ${ }^{(7)}$			
600 Volt AC Input																				
20BE1P7	0	1	0.5	4	50	1.3	1.4	1.7	2	2.6	2	4	2	6	15	3	M-C2E-B16	-	-	-
20BE2P7	0	2	1	4	50	2.1	2.1	2.7	3.6	4.8	3	6	3	10	15	3	M-C2E-B25	-	-	-
20BE3P9	0	3	2	4	50	3.0	3.1	3.9	4.3	5.9	6	9	6	15	15	7	M-C2E-B40	M-D8E-B40	-	-
20BE6P1	0	5	3	4	50	5.3	5.5	6.1	6.7	9.2	9	12	9	20	20	15	M-C2E-B63	M-D8E-B63	-	-
20BE9P0	0	7.5	5	4	50	7.8	8.1	9	9.9	13.5	10	20	10	35	30	15	M-C2E-C10	M-D8E-C10	M-F8E-C10	-
20BE011	1	10	7.5	4	50	9.9	10.2	11	13.5	18	15	25	15	40	40	15	M-C2E-C10	M-D8E-C10	M-F8E-C10	-
20BE017	1	15	10	4	50	15.4	16.0	17	18.7	25.5	20	40	20	60	50	20	M-C2E-C16	M-D8E-C16	M-F8E-C16	-
20BE022	2	20	15	4	50	20.2	21.0	22	25.5	34	30	50	30	80	80	30	M-C2E-C25	M-D8E-C25	M-F8E-C25	-CMN-2500
20BE027	2	25	20	4	50	24.8	25.7	27	33	44	35	60	35	100	100	50	-	-	M-F8E-C25	-CMN-2500
20BE032	3	30	25	4	50	29.4	30.5	32	40.5	54	40	70	40	125	125	50	-	-	M-F8E-C32	-CMN-4000
20BE041	3	40	30	4	50	37.6	39.1	41	48	64	50	90	50	150	150	100	-	-	M-F8E-C45	-CMN-4000
20BE052	3	50	40	4	50	47.7	49.6	52	61.5	82	60	110	60	200	200	100	-	-	-	-CMN-6300
20BE062	4	60	50	2	50	58.2	60.5	62	78	104	80	125	80	225	225	100	-	-	-	-CMN-6300
20BE077	5	75	-	2	$50^{(9)}$	72.3	75.1	77	85	116	90	150	90	300	300	100	-	-	-	-CMN-9000
		-	60	2	$50^{(9)}$	58.2	60.5	63	94	126	90	125	90	250	250	100	-	-	-	-CMN-6300
20BE099	5	100	-	2	$40^{(9)}$	92.9	96.6	99	109	126	125	200	125	375	375	150	-	-	-	-
		-	75	2	$40^{(9)}$	72.3	75.1	77	116	138	100	175	100	300	300	100	-	-	-	-CMN-9000
20BE125	6	125	-	2	50	117	122	125	138	188	150	250	150	375	375	250	-	-	-	-
		-	100	2	50	93	96.6	99	149	198	125	200	125	375	375	150	-	-	-	-
20BE144	6	150	-	2	50	135	141	144	158	216	175	300	175	400	400	250	-	-	-	-
		-	125	2	50	117	122	125	188	250	150	275	150	375	375	250	-	-	-	-

Table A.F 690 Volt AC Input Protection Devices

Drive Catalog Number		kW Rating		PWM Freq. kHz	$\begin{aligned} & \text { Temp. } \\ & \hline{ }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Input Ratings		Output Amps			Dual Element Time Delay Fuse		Non-Time Delay Fuse		$\begin{array}{\|l} \begin{array}{l} \text { Circuit } \\ \text { Breaker } \end{array} \text { (3) } \end{array}$	Motor Circuit Protector (4)
		ND	HD			Amps	kVA	Cont.	1 Min.	3 Sec.	Min. ${ }^{(1)}$	Max. ${ }^{(2)}$	Min. ${ }^{11}$	Max. ${ }^{(2)}$		
690 Volt AC Input																
20BF052	5	45	-	4	50 ${ }^{(9)}$	46.9	56.1	52	57	78	60	110	60	175	175	-
		-	37.5	4	$50^{(9)}$	40.1	48.0	46	69	92	50	90	50	150	150	-
20BF060	5	55	-	4	$50^{(9)}$	57.7	68.9	60	66	90	80	125	80	225	225	-
		-	45	4	$50^{(9)}$	46.9	56.1	52	78	104	60	110	60	175	175	-
20BF082	5	75	-	2	$50^{(9)}$	79.0	94.4	82	90	123	100	200	100	375	375	-
		-	55	2	$50^{(9)}$	57.7	68.9	60	90	120	80	125	80	225	225	-
20BF098	5	90	-	2	$40^{(9)}$	94.7	113	98	108	127	125	200	125	375	375	-
		-	75	2	40 ${ }^{(9)}$	79.0	94.4	82	123	140	100	200	100	375	375	-
20BF119	6	110	-	2	50	115	137	119	131	179	150	250	150	400	-	-
		-	90	2	50	94.7	113	98	147	196	125	200	125	375	-	-
20BF142	6	132	-	2	50	138	165	142	156	213	175	300	175	450	-	-
		-	110	2	50	115	137	119	179	238	150	250	150	400	-	-

Notes:
${ }^{(1)}$ Minimum protection device size is the lowest rated device that supplies maximum protection without nuisance tripping.
(2) Maximum protection device size is the highest rated device that supplies drive protection. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum.
(3) Circuit Breaker - inverse time breaker. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum.
(4) Motor Circuit Protector - instantaneous trip circuit breaker. For US NEC minimum size is 125% of motor FLA. Ratings shown are maximum.
(5) Bulletin 140 M with adjustable current range should have the current trip set to the minimum range that the device will not trip.
${ }^{(6)}$ Manual Self-Protected (Type E) Combination Motor Controller, UL listed for 208 Wye or Delta, 240 Wye or Delta, $480 \mathrm{Y} / 277$ or $600 \mathrm{Y} / 347$. Not UL listed for use on 480 V or 600 V Delta/Delta systems.
(7) The AIC ratings of the Bulletin 140M Motor Protector may vary. See publication 140M-SG001B-EN-P.
(8) Maximum allowable rating by US NEC. Exact size must be chosen for each installation.
(9) UL Type $12 /$ IP54 (flange mount) heatsink ambient temperature rating is $40^{\circ} \mathrm{C}$ / ambient of unprotected drive portion (inside enclosure) is $55^{\circ} \mathrm{C}$.

Table A.G 540 Volt DC Input Protection Devices

Drive Catalog Number		kW Rating		DC Input Ratings		Output Amps			Fuse	Bussmann Style Fuse
		ND	HD	Amps	kW	Cont.	1 Min.	3 Sec.		
540 Volt DC Input										
20BC1P3	1	0.37	0.25	1.3	0.7	1.3	1.4	1.9	3	BUSSMANN_JKS-3
20BC2P1	1	0.75	0.55	2.1	1.1	2.1	2.4	3.2	6	BUSSMANN_JKS-6
20BC3P5	1	1.5	0.75	3.7	2.0	3.5	4.5	6.0	8	BUSSMANN_JKS-8
20BC5P0	1	2.2	1.5	5.3	2.9	5.0	5.5	7.5	10	BUSSMANN_JKS-10
20BC8P7	1	4	3.0	9.3	5.0	8.7	9.9	13.2	20	BUSSMANN_JKS-20
$20 \mathrm{CC011}$	1	5.5	4	12.6	6.8	11.5	13	17.4	25	BUSSMANN_JKS-25
20BC015	1	7.5	5.5	16.8	9.1	15.4	17.2	23.1	30	BUSSMANN_JKS-30
20 BCO 22	1	11	7.5	24	13	22	24.2	33	45	BUSSMANN_JKS-45
20BC030	2	15	11	33.2	17.9	30	33	45	60	BUSSMANN_JKS-60
20 BC 037	2	18.5	15	40.9	22.1	37	45	60	80	BUSSMANN_JKS-80
20BC043	3	22	18.5	47.5	25.7	43	56	74	90	BUSSMANN_JKS-90
20BC056	3	30	22	61.9	33.4	56	64	86	110	BUSSMANN_JKS-110
20 BC 072	3	37	30	80.5	43.5	72	84	112	150	BUSSMANN_JKS-150
20BC085	4	45	-	95.1	51.3	85	94	128	200	BUSSMANN_JKS-200
		-	37	80.5	43.5	72	108	144	150	BUSSMANN_JKS-150
20BH105 ${ }^{(1)}$	5	55	-	117.4	63.4	105	116	158	200	BUSSMANN_JKS-200
		-	45	95.1	51.3	85	128	170	200	BUSSMANN_JKS-200
20BH125 ${ }^{(1)}$	5	55	-	139.8	75.5	125	138	163	225	BUSSMANN_JKS-225
		-	45	91.9	63.7	96	144	168	150	
20BH140 ${ }^{(1)}$	6	75	-	158.4	85.6	140	154	210	300	BUSSMANN_JKS-300
		-	55	117.4	63.4	105	158	210	200	BUSSMANN_JKS-200
20BH170 ${ }^{(1)}$	6	90	-	192.4	103.9	170	187	255	350	BUSSMANN_JKS-350
		-	75	158.4	85.6	140	210	280	300	BUSSMANN_JKS-300
20BH205 ${ }^{(1)}$	6	110	-	232	125.3	205	220	289	400	BUSSMANN_JKS-400
		-	90	192.4	103.9	170	255	313	350	BUSSMANN_JKS-350

(1) Also applies to "P" voltage class.
\square

Table A.H 650 Volt DC Input Protection Devices

Drive Catalog Number	으눈	kW Rating		DC Input Ratings		Output Amps			Fuse	Bussmann Style Fuse
		ND	HD	Amps	kW	Cont.	1 Min.	3 Sec.		
650 Volt DC Input										
20BD1P1	0	0.5	0.33	1.0	0.6	1.1	1.2	1.6	6	BUSSMANN_JKS-6
20BD2P1	0	1	0.75	1.9	1.2	2.1	2.4	3.2	6	BUSSMANN_JKS-6
20BD3P4	0	2	1.5	3.0	2.0	3.4	4.5	6.0	6	BUSSMANN_JKS-6
20BD5P0	0	3	2	4.5	2.9	5.0	5.5	7.5	10	BUSSMANN_JKS-10
20BD8P0	0	5	3	8.1	5.2	8.0	8.8	12	15	BUSSMANN_JKS-15
20BD011	0	7.5	5	11.1	7.2	11	12.1	16.5	20	BUSSMANN_JKS-20
20BD014	1	10	7.5	14.7	9.5	14	16.5	22	30	BUSSMANN_JKS-30
20BD022	1	15	10	23.3	15.1	22	24.2	33	45	BUSSMANN_JKS-45
20 BD 027	2	20	15	28.9	18.8	27	33	44	60	BUSSMANN_JKS-60
20BD034	2	25	20	36.4	23.6	34	40.5	54	70	BUSSMANN_JKS-70
20BD040	3	30	25	42.9	27.8	40	51	68	80	BUSSMANN_JKS-80
20BD052	3	40	30	55.7	36.1	52	60	80	100	BUSSMANN_JKS-100
20BD065	3	50	40	69.7	45.4	65	78	104	150	BUSSMANN_JKS-150
20BR077 ${ }^{(1)}$	4	60	-	84.5	54.7	77	85	116	150	BUSSMANN_JKS-150
		-	50	67.9	45.4	65	98	130	150	BUSSMANN_JKS-150
20BR096 (1)	5	75	-	105.3	68.3	96	106	144	200	BUSSMANN_JKS-200
		-	60	84.5	54.7	77	116	154	150	BUSSMANN_JKS-150
20BR125 ${ }^{(1)}$	5	100	-	137.1	88.9	125	138	163	250	BUSSMANN_JKS-250
		-	75	105.3	68.3	96	144	168	200	BUSSMANN_JKS-200
20BR156 ${ }^{(1)}$	6	125	-	171.2	110.9	156	172	234	300	BUSSMANN_JKS-300
		-	100	137.1	88.9	125	188	250	250	BUSSMANN_JKS-250
20BR180 ${ }^{(1)}$	6	150	-	204.1	132.2	180	198	270	400	BUSSMANN_JKS-400
		-	125	171.2	110.9	156	234	312	300	BUSSMANN_JKS-300

(1) Also applies to " J " voltage class.

Dimensions

Figure A. 3 PowerFlex 700 Frames 0-3 (0 Frame Shown)

Dimensions are in millimeters and (inches).

	A	B	C	D	E	Weight ${ }^{(2)} \mathrm{kg}$ (lbs.)	
						Drive	Drive \& Packaging
0	110.0 (4.33)	336.0 (13.23)	200.0 (7.87)	80.0 (3.15)	320.0 (12.60)	5.22 (11.5)	8.16 (18)
1	135.0 (5.31)	336.0 (13.23)	200.0 (7.87)	105.0 (4.13)	320.0 (12.60)	7.03 (15.5)	9.98 (22)
2	222.0 (8.74)	342.5 (13.48)	200.0 (7.87)	192.0 (7.56)	320.0 (12.60)	12.52 (27.6)	15.20 (33.5)
3	222.0 (8.74)	517.5 (20.37)	200.0 (7.87)	192.0 (7.56)	500.0 (19.69)	18.55 (40.9)	22.68 (50)

(1) Refer to Table A.I for frame information.
(2) Weights include HIM and Standard I / O.

Figure A. 4 PowerFlex 700 Frame 4

Dimensions are in millimeters and (inches)

(1) Refer to Table A.I for frame information.
(2) Weights include HIM and Standard I / O.

Figure A. 5 PowerFlex 700 Frame 5

Dimensions are in millimeters and (inches).

	A (Max.)	B	C (Max.)	D	E	Approx. Weight ${ }^{(2)} \mathrm{kg}$ (lbs.)	
						Drive	Drive \& Packaging
5	308.9 (12.16)	644.5 (25.37) ${ }^{(3)}$	275.4 (10.84)	225.0 (8.86)	625.0 (24.61)	37.19 (82.0)	49.50 (109.0)

(1) Refer to Table A.I for frame information.
(2) Weights include HIM and Standard I/O. Add $2.70 \mathrm{~kg}(6.0 \mathrm{lbs}$.) for the 20BC140 drive.
(3) When using the supplied junction box (100 HP drives Only), add an additional 45.1 mm (1.78 in .) to this dimension.

Figure A. 6 PowerFlex 700 Frame 6

Dimensions are in millimeters and (inches)

	A (Max.)	B	C (Max.)	D	E	Approx. Weight ${ }^{(2)} \mathrm{kg}$ (lbs.)	
						Drive	Drive \& Packaging
6	403.9 (15.90)	850.0 (33.46)	$275.5(10.85)$	300.0 (11.81)	825.0 (32.48)	71.44 (157.5) ${ }^{(3)}$	100.9 (222.0) ${ }^{(3)}$

(1) Refer to Table A.I for frame information.
(2) Weights include HIM and Standard I/O. Add 13.60 kg (30.0 lbs .) for the following drives; 20BB260, 20BC260 and 20BD248.
(3) Add an additional $3.6 \mathrm{~kg}(8.00 \mathrm{lbs}$.) for 200 HP drives.

Figure A. 7 PowerFlex 700 Bottom View Dimensions

Figure A. 8 PowerFlex 700 Frame 5 Flange Mount

	Description	Approx. Weight ${ }^{(2)} \mathrm{kg}$ (lbs.)	
		Drive	Drive \& Packaging
5	Flange Moun	61.69 (136.0)	81.65 (180.0)

(1) Refer to Table A.I for frame information.
(2) Weights include HIM and Standard I/O.

Figure A. 9 PowerFlex 700 Frame 5 Flange Mount - Cutout

Frame Cross Reference

Table A.I PowerFlex 700 Frames

Frame	AC Input									
	208/240		400V		480V		600V		690V	
	ND HP	HD HP	ND kW	HD kW	ND HP	HD HP	ND HP	HD HP	ND kW	HD kW
0	0.5	0.33	0.37	0.25	0.5	0.33	1	0.5	-	-
	1	0.75	0.75	0.55	1	0.75	2	1	-	-
	-	-	1.5	0.75	2	1.5	3	2	-	-
	-	-	2.2	1.5	3	2	5	3	-	-
	-	-	4	2.2	5	3	7.5	5	-	-
	-	-	5.5	4	7.5	5	-	-	-	-
1	2	1.5	7.5	5.5	10	7.5	10	7.5	-	-
	3	2	11	7.5	15	10	15	10	-	-
	5	3	-	-	-	-	-	-	-	-
	7.5	5	-	-	-	-	-	-	-	-
2	10	7.5	15	11	20	15	20	15	-	-
	-	-	18.5	15	25	20	25	20	-	-
3	15	10	22	18.5	30	25	30	25	-	-
	20	15	30	22	40	30	40	30	-	-
	-	-	37	30	50	40	50	40	-	-
4	25	20	45	37	60	50	60	50	-	-
	30	25	-	-	-	-	-	-	-	-
5	40	30	55	45	75	60	75	60	45	37.5
	50	40	75	55	100	75	100	75	55	45
	-	-	-	-	-	-	-	-	75	55
	-	-	-	-	-	-	-	-	90	75
6	60	50	90	75	125	100	125	100	110	90
	75	60	110	90	150	125	150	125	132	110
	-	-	132	110	200	150	-	-	-	-

Frame	DC Input			
	540V		650V	
	ND HP	HD HP	ND HP	HD HP
0	-	-	0.5	0.33
	-	-	1	0.75
	-	-	2	1.5
	-	-	3	2
	-	-	5	3
	-	-	7.5	5
1	0.37	0.25	10	7.5
	0.75	0.55	15	10
	1.5	0.75	-	-
	2.2	1.5	-	-
	4	2.2	-	-
	5.5	4	-	-
	7.5	5.5	-	-
	11	7.5	-	-
2	15	11	20	15
	18.5	15	25	20
3	22	18.5	30	25
	30	22	40	30
	37	30	50	40
4	45	37	60	50
	-	-	-	-
5	55	45	75	60
	-	-	100	75
6	75	55	125	100
	90	75	150	125
	110	90	-	-

Notes:

Appendix B

HIM Overview

For information on . .	See page ..
External and Internal Connections	B-1
LCD Display Elements	B-2
	BLT Functions

For information on ..	See page ..
Menu Structure	B-3
Viewing and Editing	B-5
Parameters	
Removing/llnstalling the	B-8

External and Internal Connections

The PowerFlex 700 provides a number of cable connection points (0 Frame shown).

No.	Connector	Description
$\boldsymbol{1}$	DPI Port 1	HIM connection when installed in cover.
$\mathbf{(2)}$	DPI Port 2	Cable connection for handheld and remote options.
$\boldsymbol{3}$	DPI Port 3 or 2	Splitter cable connected to DPI Port 2 provides additional port.
4	DPI Port 5	Cable connection for communications adapter.

LCD Display Elements

Display	Description			
F \rightarrow \|Power Loss \mid 吊\|Auto \mid \%ir	Direction \| Drive Status	Alarm	Auto/Man	Information
0.0 Hz	Commanded or Output Frequency			
Main Menu: Diagnostics Parameter Device Select	Programming / Monitoring / Troubleshooting			

The top line of the HIM display can be configured with [DPI Fdbk Select], parameter 299.

ALT Functions

To use an ALT function, press the ALT key, release it, then press the programming key associated with one of the following functions:

Table B.A ALT Key Functions

ALT Key and then ...			Performs this function ...
ALT	Esc	S.M.A.R.T.	Displays the S.M.A.R.T. screen.
	Sel	View	Allows the selection of how parameters will be viewed or detailed information about a parameter or component.
		Lang	Displays the language selection screen.
		Auto / Man	Switches between Auto and Manual Modes.
		Remove	Allows HIM removal without causing a fault if the HIM is not the last controlling device and does not have Manual control of the drive.
		Exp	Allows value to be entered as an exponent (Not available on PowerFlex 700).
	$+/-$	Param \#	Allows entry of a parameter number for viewing/ editing.

Menu Structure

Figure B. 1 HIM Menu Structure

Diagnostics Menu

When a fault trips the drive, use this menu to access detailed data about the drive.

Option	Description
Faults	View fault queue or fault information, clear faults or reset drive.
Status Info	View parameters that display status information about the drive.
Device Version	View the firmware version and hardware series of components.
HIM Version	View the firmware version and hardware series of the HIM.

Parameter Menu
Refer to Viewing and Editing Parameters on page B-5.

Device Select Menu

Use this menu to access parameters in connected peripheral devices.

Memory Storage Menu

Drive data can be saved to, or recalled from, User and HIM sets.
User sets are files stored in permanent nonvolatile drive memory.
HIM sets are files stored in permanent nonvolatile HIM memory.

Option	Description
HIM Copycat Device $->$ HIM Device $<-$ HIM	Save data to a HIM set, load data from a HIM set to active drive memory or delete a HIM set.
Device User Sets	Save data to a User set, load data from a User set to active drive memory or name a User set.
Reset To Defaults	Restore the drive to its factory-default settings.

Start Up Menu

See Chapter 2.

Preferences Menu

The HIM and drive have features that you can customize.

Option	Description
Drive Identity	Add text to identify the drive.
Change Password	Enable/disable or modify the password.
User Dspy Lines	Select the display, parameter, scale and text for the User Display. The User Display is two lines of user-defined data that appears when the HIM is not being used for programming.
User Dspy Time	Set the wait time for the User Display or enable/disable it.
User Dspy Video	Select Reverse or Normal video for the Frequency and User Display lines.
Reset User Dspy	Return all the options for the User Display to factory default values.

The PowerFlex 700 drive is initially set to Basic Parameter View. To view all parameters, set parameter 196 [Param Access Lvl] to option 1 "Advanced". Parameter 196 is not affected by the Reset to Defaults function.

Viewing and Editing Parameters

LCD HIM

Step	Key(s)	Example Displays
1. In the Main Menu, press the Up Arrow or Down Arrow to scroll to "Parameter."	Δ or ∇	
2. Press Enter. "FGP File" appears on the top line and the first three files appear below it.	\cdots	FGP: File Monitor Motor Control Speed Reference
3. Press the Up Arrow or Down Arrow to scroll through the files.	Or	
4. Press Enter to select a file. The groups in the file are displayed under it.	\cdots	FGP: Group Motor Data Torq Attributes Volts per Hertz
5. Repeat steps 3 and 4 to select a group and then a parameter. The parameter value screen will appear.		FGP Parameter Maximum Voltage
6. Press Enter to edit the parameter.	-	Maximum Freq Compensation
7. Press the Up Arrow or Down Arrow to change the value. If desired, press Sel to move from digit to digit, letter to letter, or bit to bit. The digit or bit that you can change will be highlighted.	or Sel	
8. Press Enter to save the value. If you want to cancel a change, press Esc.		
9. Press the Up Arrow or Down Arrow to scroll through the parameters in the group, or press Esc to return to the group list.	(A) or Esc	FGP: Par 55 Maximum Freq 90.00 Hz $25<>$ 400.00

Numeric Keypad Shortcut

If using a HIM with a numeric keypad, press the ALT key and the +/key to access the parameter by typing its number.

Linking Parameters

Most parameter values are entered directly by the user. However, certain parameters can be "linked," so the value of one parameter becomes the value of another. For Example: the value of an analog input can be linked to [Accel Time 2]. Rather than entering an acceleration time directly (via HIM), the link allows the value to change by varying the analog signal. This can provide additional flexibility for advanced applications.
Each link has 2 components:

- Source parameter - sender of information.
- Destination parameter - receiver of information.

Most parameters can be a source of data for a link, except parameter values that contain an integer representing an ENUM (text choice). These are not allowed, since the integer is not actual data (it represents a value). Table B.B lists the parameters that can be destinations. All links must be established between equal data types (parameter value formatted in floating point can only source data to a destination parameter value that is also floating point).

Establishing A Link

Step	Key(s)	Example Displays
1. Select a valid destination parameter (see		FGP: Parameter Accel Time 1
Table B.B) to be linked (refer to page B-5). The parameter value screen will appear.		Accel Time 2
Decel Time 1		
2.Press Enter to edit the parameter. The cursor will move to the value line. 3. Press ALT and then View (Sel). Next, press the Up or Down Arrow to change "Present Value" to "Define Link." Press Enter.	ALT + Sel	Min: 0.1 Secs Max: 3600.0 Secs Dft: 10.0 Secs
Present Value		

Table B.B Linkable Parameters

Number	Parameter
54	Maximum Voltage
56	Compensation
57	Flux Up Mode
58	Flux Up Time
59	SV Boost Filter
62	IR Voltage Drop
63	Flux Current Ref
69	Start/Acc Boost
70	Run Boost
71	Break Voltage
72	Break Frequency
84	Skip Frequency 1
85	Skip Frequency 2
86	Skip Frequency 3
87	Skip Freq Band
91	Speed Ref A Hi
92	Speed Ref A Lo
94	Speed Ref B Hi
95	Speed Ref B Lo
97	TB Man Ref Hi
98	TB Man Ref Lo
100	Jog Speed
101	Preset Speed 1
102	Preset Speed 2
103	Preset Speed 3
104	Preset Speed 4
105	Preset Speed 5
106	Preset Speed 6
107	Preset Speed 7
119	Trim Hi
120	Trim Lo
121	Slip RPM @ FLA
122	Slip Comp Gain
123	Slip RPM Meter
127	PI Setpoint
129	PI Integral Time
130	PI Prop Gain
131	PI Lower Limit
132	PI Upper Limit
133	PI Preload
140	Accel Time 1
141	Accel Time 2
142	Decel Time 1
143	Decel Time 2
146	S-Curve \%
148	Current Lmt Val
149	Current Lmt Gain
151	PWM Frequency
152	Droop RPM @ FLA
153	Regen Power Limit
154	Current Rate Limit
158	DC Brake Level

Number	Parameter
159	DC Brake Time
160	Bus Reg Ki
164	Bus Reg Kp
165	Bus Reg Kd
170	Flying StartGain
175	Auto Rstrt Delay
180	Wake Level
181	Wake Time
182	Sleep Level
183	Sleep Time
185	Power Loss Time
186	Power Loss Level
321	Anlg In Sqr Root
322	Analog In1 Hi
323	Analog In1 Lo
324	Analog In1 Loss
325	Analog In2 Hi
326	Analog In2 Lo
327	Analog In2 Loss
343	Analog Out1 Hi
344	Analog Out1 Lo
346	Analog Out2 Hi
347	Analog Out2 Lo
381	Dig Out1 Level
382	Dig Out1 OnTime
383	Dig Out1 OffTime
385	Dig Out2 Level
386	Dig Out2 OnTime
387	Dig Out2 OffTime
389	Dig Out3 Level
390	Dig Out3 OnTime
391	Dig Out3 OffTime
416	Fdbk Filter Sel
419	Notch Filter Freq
420	Notch Filter K
428	Torque Ref A Hi
429	Torque Ref A Lo
430	Torq Ref A Div
432	Torque Ref B Hi
433	Torque Ref B Lo
434	Torq Ref B Mult
435	Torque Setpoint
436	Pos Torque Limit
437	Neg Torque Limit
445	Ki Speed Loop
446	Kp Speed Loop
447	Kf Speed Loop
449	Speed Desired BW
450	Total Inertia
454	Rev Speed Limit
460	PI Reference Hi
461	PI Reference Lo

Number	Parameter
462	PI Feedback Hi
463	PI Feedback Lo
$476-494$	ScaleX In Value
$477-495$	ScaleX In Hi
$478-496$	ScaleX In Lo
$479-497$	ScaleX Out Hi
$480-498$	ScaleX Out Lo
602	Spd Dev Band
603	SpdBand Integrat
604	Brk Release Time
605	ZeroSpdFloatTime
606	Float Tolerance
607	Brk Set Time
608	TorqLim SlewRate
609	BrkSlip Count
610	Brk Alarm Travel
611	MicroPos Scale\%

Removing/Installing the HIM

The HIM can be removed or installed while the drive is powered.
Important: HIM removal is only permissible in Auto mode. If the HIM is removed while in Manual mode or the HIM is the only remaining control device, a fault will occur.

Step	Key(s)	Example Displays
To remove the HIM ...		Remove Op Intrfc: Press Enter to 1. Press ALT and then Enter (Remove). The Remove HIM confirmation screen appears.
ALT		
(Psconnect Op Intrf? 1 Control)		

Appendix C

Application Notes

For information on ..	See page ..
Adjustable Voltage Operation	C-1
External Brake Resistor	C-3
Lifting/Torque Proving	C-4
Limit Switches for Digital Inputs	C-11
Minimum Speed	C-12
Motor Control Technology	$\mathrm{C}-12$
Motor Overload	C-14
Overspeed	$\mathrm{C}-16$
Position Indexer/Speed Profiler	C-17

For information on ..	See page...
Power Loss Ride Through	C-27
Process PID	C-28
Reverse Speed Limit	C-31
Skip Frequency	C-32
Sleep Wake Mode	C-34
Start At PowerUp	C-36
Stop Mode	C-36
Voltage Tolerance	C-40

Adjustable Voltage Operation

In Adjustable Voltage control mode, the output voltage is controlled independently from the output frequency. The voltage and frequency components have independent references and acceleration/deceleration rates. Single-phase and three-phase output is possible with this feature. The Adjustable Voltage mode is designed to operate on electro-magnetic loads - not typical AC motors.

Typical applications include:

- Linear Motors
- Vibration Welding
- Vibratory conveying
- Electromagnetic Stirring
- Induction Heating (400 Hz or lower)
- Resistive Loads (dryers)
- Power Supplies

Enabling Adjustable Voltage

Adjustable Voltage is enabled in [Motor Cntl Sel], parameter 053 by selecting " 5 , Adj Voltage." In this mode, current limit will now reduce voltage instead of frequency when the threshold is reached. Aggressive ramp rates on the voltage command should be avoided to minimize nuisance overcurrent trips.

Fixed Frequency Control Applications

Many of the applications require a fixed frequency operation with variable voltage levels. For these applications it is best to set the frequency ramp rates to " 0 " using [Accel Time $1 \& 2$] and [Decel Time 1 \& 2], parameters 140-143. The ramp rates for output voltage are independently controlled with parameters [Adj Volt AccTime] and [Adj Volt DecTime], parameters 675-676.

Output Filters

Several adjustable voltage applications may require the use of output filters. Any L-C or sine wave filter used on the output side of the drive must be compatible with the desired frequency of operation, as well as the PWM voltage waveform developed by the inverter. The drive is capable of operating from $0-400 \mathrm{~Hz}$ output frequency and the PWM frequencies range from $2-10 \mathrm{kHz}$. When a filter is used on the output of the drive, [Drive OL Mode], parameter 150 should be programmed so that PWM frequency is not affected by an overload condition (i.e. " 0 , Disabled" or " 1 , Reduce CLim").

Trim Function

The trim function can be used with the Adjustable Voltage mode. The value of the selection in [Adj Volt TrimSel], parameter 669 is summed with the value of [Adj Volt Select], parameter 651. Scaling of the trim function is controlled with [Adj Volt Trim\%], parameter 672. When the sign of [Adj Volt Trim\%] is negative, the value selected in [Adj Volt TrimSel] is subtracted from the reference.

Process Control

The Process PI loop in the drive can be configured to regulate the frequency or voltage commands of the drive. Typical applications using the Adjustable Voltage mode will close the loop around the voltage command. Process PI is enabled by selecting " 1 , AdjVoltTrim" in bit 10 of [PI Configuration], parameter 124. This bit configures the PI regulator output to trim the voltage reference, rather than the torque or speed references. The trim can be configured to be exclusive by selecting " 1 , Excl Mode" in bit 0 of [PI Configuration], parameter 124. Trimming the voltage reference is not compatible with trimming the torque reference, thus if bits 10 and 8 of [PI Configuration] are set, a type II alarm will occur, setting bit 19 (PI Cfg Cflct) in [Drive Alarm 2], parameter 212.

External Brake Resistor

Figure C. 1 External Brake Resistor Circuitry
(Input Contactor) M

Lifting/Torque Proving

The TorqProve ${ }^{\mathrm{TM}}$ feature of the PowerFlex 700 is intended for applications where proper coordination between motor control and a mechanical brake is required. Prior to releasing a mechanical brake, the drive will check motor output phase continuity and verify proper motor control (torque proving). The drive will also verify that the mechanical brake has control of the load prior to releasing drive control (brake proving). After the drive sets the brake, motor movement is monitored to ensure the brakes ability to hold the load. TorqProve can be operated with an encoder or encoderless.

TorqProve functionality with an encoder includes:

- Torque Proving (includes flux up and last torque measurement)
- Brake Proving
- Brake Slip (feature slowly lowers load if brake slips/fails)
- Float Capability (ability to hold full torque at zero speed)
- Micro-Positioning
- Fast Stop
- Speed Deviation Fault, Output Phase Loss Fault, Encoder Loss Fault.

Encoderless TorqProve functionality includes:

- Torque Proving (includes flux up and last torque measurement)
- Brake Proving
- Micro-Positioning
- Fast Stop
- Speed Deviation Fault, Output Phase Loss Fault.

Important: Brake Slip detection and Float capability (ability to hold load at zero speed) are not available in encoderless TorqProve

ATTENTION: Loss of control in suspended load applications can cause personal injury and/or equipment damage. Loads must always be controlled by the drive or a mechanical brake. Parameters 600-612 are designed for lifting/torque proving applications. It is the responsibility of the engineer and/or end user to configure drive parameters, test any lifting functionality and meet safety requirements in accordance with all applicable codes and standards.

ATTENTION: User must read the following prior to the use of TorqProve with no encoder.

Encoderless TorqProve must be limited to lifting applications where personal safety is not a concern. Encoders offer additional protection and must be used where personal safety is a concern. Encoderless TorqProve can not hold a load at zero speed without a mechanical brake and does not offer additional protection if the brake slips/fails. Loss of control in suspended load applications can cause personal injury and/or equipment damage.

It is the responsibility of the engineer and/or user to configure drive parameters, test any lifting functionality and meet safety requirements in accordance with all applicable codes and standards. If encoderless TorqProve is desired, the user must certify the safety of the application. To acknowledge that the end user has read this "Attention" and properly certified their encoderless application, bit 8 ("TPEncdless") of [Compensation], parameter 56 must be changed to a " 1 ." This will disable Fault 28, "See Manual" and allow bit 1 of Parameter 600 to be changed to a " 1 " enabling encoderless TorqProve.

TorqProve Manual Start Up

It is possible to use the Assisted Start Up (see page 2-3) to tune the motor. However, it is recommended that the motor be disconnected from the hoist/crane equipment during the routine. If this is not possible, refer to steps 1 through 12 on the following pages.

ATTENTION: To guard against personal injury and/or equipment damage caused by unexpected brake release, verify the Digital Out 1 brake connections and/or programming. The default drive configuration energizes the Digital Out 1 relay when power is applied to the drive. The PowerFlex 700 drive will not control the mechanical brake until TorqProve is enabled. If the brake is connected to this relay, it could be released. If necessary, disconnect the relay output until wiring/programming can be completed and verified.

Initial Static Auto Tune Test

1. Set the following parameters as shown.

No.	Name	Value	Notes
380	[Digital Out1 Sel]	" 9, At Speed"	keeps brake engaged during test
$041-045$	[Motor NP . .]	per nameplate	enter motor nameplate data
053	[Motor Cntl Sel]	"4, FVC Vector"	
080	[Feedback Select]	"3, Encoder"	
061	[Autotune]	"1, Static Tune"	

2. Press the Start key on the HIM. Parameters $062-064$ will be updated. \square

Motor Rotation/Encoder Direction Test

3. Set the following parameters as shown.

No.	Name	Value	Notes
053	$[$ [Motor Cntl Sel]	"0, Sensrls Vect"	
080	$[$ Feedback Select $]$	"0, Open Loop"	
090	$[$ Digital Out1 Sel]	"11, Preset Spd1"	
238	$[$ Fault Config 1]	Bit 8, "In PhaseLoss" $=1$ Bit 12, "OutPhaseLoss" $=1$	
380	[Digital Out1 Sel]	"4, Run"	releases brake

Important: If the direction of travel is critical at this point, perform short jogs to determine which run direction (RUNFWD or RUNREV) should be used in the next steps.
4. Press Start and run the drive in the desired direction. Observe the direction of motor rotation.
If rotation is not in the desired direction:

- remove drive power and reverse the two motor leads, or . . .
- set bit 5 of [Compensation], parameter 56 to "Mtr Lead Rev."

5. With the drive running, observe [Encoder Speed], parameter 415. If the sign of the encoder is not the same as the displayed frequency, remove drive power and reverse encoder leads A and A NOT.
6. With the drive running, verify correct motor rotation and encoder direction. Set [Motor Fdbk Type], parameter 412 to "1, Quad Check." Stop the drive.

Rotate AutoTune Test

ATTENTION: In this test the following conditions will occur:

- The motor will be run for 12 seconds at base frequency $(60 \mathrm{~Hz})$. Note that equipment travel during this 12 second interval may exceed equipment limits. However, travel distance can be reduced by setting [Maximum Speed], parameter 82 to a value less than 45 Hz (i.e. $22.5 \mathrm{~Hz}=12$ seconds at 30 Hz).
- The brake will be released without torque provided by the drive for 15 seconds.

To guard against personal injury and/or equipment damage, this test should not be performed if either of the above conditions are considered unacceptable by the user.
7. Set the following parameters as shown.

No.	Name	Value	Notes
053	[Motor Cntl Sel]	"4, FVC Vector"	
080	$[$ Feedback Select] $]$ "3, Encoder"		
061	[Autotune]	"2, Rotate Tune"	

8. Start the drive and run the motor in the desired direction. Parameters $062,063,064 \& 121$ will be updated.

Inertia AutoTune Test
9. Set [Inertia Autotune], parameter 067 to " 1 , Inertia Tune."
10. Press Start and run the motor in the direction desired. Parameters 445,446 and 450 will be updated.
11. Set [Speed Desired BW], parameter 449 to desired setting.
12. Set up is complete - check for proper operation.

Drive Setup

To Enable TorqProve with an encoder, bit 0 of [TorqProve Cnfg], parameter 600 must be set to a " 1 ." Once this is set, a Type 2 alarm will be active until the following three parameter settings are entered:

No.	Name	Value	Notes
053	[Motor Cntl Sel]	"4, FVC Vector"	
080	[Feedback Select]	"3, Encoder"	
412	$[$ [Motor Fdbk Type]	"1, Quad Check"	

To Enable Encoderless TorqProve, both bits 0 and 1 of [TorqProve Cnfg], parameter 600 must be set to a " 1 ". Once this is set, a Type 2 alarm will be active until the following three parameter settings are entered:

No.	Name	Value	Notes
053	[Motor Cntl Sel]	"4, FVC Vector" or	
"0, Sensrls Vect"			

Installation/Wiring

When [TorqProve Cnfg] is set to "Enable," the Digital Out 1 relay is used to control the external brake contactor. The normally open (N.O.) contact, when closed, is intended to energize the contactor. This provides the mechanical brake with voltage, causing the brake to release. Any interruption of power to the contactor will set the mechanical brake. Programming [Digital Out 1 Sel], parameter 380 will be ignored when [TorqProve Cnfg] is set to "Enable."

Figure C. 2 Typical Torque Proving Configuration

Lifting/Torque Proving Application Programming

The PowerFlex 700 lifting application is mainly influenced by parameters 600 through 611 in the Torque Proving group of the Application file. Figure C. 3 and the paragraphs that follow describe programming.

Figure C. 3 Torque Proving Flow Diagram

All times between Drive Actions are programmable and can be made very small

Torque Proving

When the drive receives a start command to begin a lifting operation, the following actions occur:

1. The drive first performs a transistor diagnostic test to check for phase-to-phase and phase-to-ground shorts. A failure status from either of these tests will result in a drive fault and the brake relay will NOT be energized (brake remains set).
2. The drive will then provide the motor with flux as well as perform a check for current flow through all three motor phases. This ensures that torque will be delivered to the load when the mechanical brake is released. When torque proving is enabled, open phase loss detection is performed regardless of the setting of Bit 12 of [Fault Config 1], parameter 238.
3. If the drive passes all tests, the brake will be released and the drive will take control of the load after the programmed time in [Brk Release Time], parameter 604 which is the typical mechanical release time of the brake.

Brake Proving

When the drive receives a stop command to end a lifting operation, the following actions occur:

1. The brake is commanded closed when the speed of the motor reaches zero.
2. After the time period programmed in [Brk Set Time], parameter 607, the drive will verify if the brake is capable of holding torque. It will do this by ramping the torque down at a rate set in [TorqLim SlewRate], parameter 608. Note that the drive can be started again at anytime without waiting for either of the above timers to finish.
3. While the torque is ramping down, the drive will perform a brake slip test. If movement exceeds the limit set in [BrkSlip Count], parameter 609, then an alarm is set and the drive will start a brake slip procedure. The drive will allow the motor to travel the distance programmed [Brk Alarm Travel], parameter 610. Another slip test will be performed and will repeat continuously until; A) the load stops slipping, or B) the load reaches the ground. This feature keeps control of the load and returns it to the ground in a controlled manner in the event of a mechanical brake failure.

Speed Monitoring / Speed Band Limit

This routine is intended to fault the drive if the difference between the speed reference and the encoder feedback is larger than the value set in [Spd Dev Band], parameter 602 and the drive is NOT making any progress toward the reference. [SpdBand Integrat], parameter 603 sets the time that the speed difference can be greater than the deviation band before causing a fault and setting the brake.

Float
Float is defined as the condition when the drive is holding the load at zero hertz while holding off the mechanical brake. The float condition starts when the frequency drops below the speed set in [Float Tolerance], parameter 606. Float will stay active for a period of time set by [ZeroSpdFloatTime], parameter 605. If a digital input (parameters 361-366) is set to "Micro Pos" (also Float) and it is closed, the Float condition will stay active and will disregard the timer. This signal is also available through a communication device, see [TorqProve Setup], parameter 601.

When encoderless TorqProve is enabled, the drive can not hold the load at zero speed. Parameter 606 [Float Tolerance] will then define the speed at which the brake is set.

Micro Position

Micro Position refers to rescaling of the commanded frequency by a percentage entered in [MicroPos Scale \%], parameter 611. This allows for slower operation of a lift which provides an operator with better resolution when positioning a load. Micro Position is activated only when the drive is running at or near zero speed. This can be initiated by a digital input configured as Micro Pos or through a communication device ([TorqProve Setup]) which is the same digital input which signals the float condition. To allow the Micro Position digital input to change the speed command while the drive is running, enter a " 1 " in Parameter 600, Bit 2 "MicroPosSel." A "0" will require drive to reach zero speed for micro position speed to become active.

Fast Stop

Fast Stop is intended to stop the load as fast as possible then set the mechanical brake. The Fast Stop can be initiated from a digital input or through a communication device through [TorqProve Setup]. The difference from a normal stop is that the decel time is forced to be 0.1 seconds. When the Torque Proving function is enabled, the Float time is ignored at the end of the ramp. This feature can be used without enabling the Torque Proving function.

Limit Switches for Digital Inputs

The PowerFlex 700 includes digital input selections for decel and end limit switches. These can be used for applications that use limit switches for decelerating near the end of travel and then stopping at the end position. The end limit switch can also be used for end limit stops as many hoists require. These inputs can be used with or without TorqProve enabled.

Decel Limit for Digital Inputs

Decel Limit is enabled by selecting "Decel Limit" as one of the digital inputs in [Digital In1-6 Select], parameters 361-366. When this input is "low" (opposite logic), the speed reference command will change from the selected reference to the value in [Preset Speed 1], parameter 101. The deceleration rate will be based on the active deceleration time. This limit will be enforced only in the direction the drive was running when the switch was activated (momentarily or continuously, see "B" in Figure C.4). The opposite direction will still be allowed to run at the selected reference speed. No speed limitation will occur between the limit switches ("A" in Figure C.4).

Two different switches can be connected in series to one digital input to provide a decel limit at both ends of the application (i.e. lift, conveyor, etc.). With proper set up, the drive will automatically apply the speed reduction based on the direction of the load even though only one digital input is being used. See "B" in Figure C.4.

End Travel Limit for Digital Inputs

End Travel Limit is enabled by selecting "End Limit" as one of the digital inputs in [Digital In1-6 Select]. A "low" at this input (opposite logic) will cause the drive to do a fast decel (0.1 sec) and turn off. This Stop limit will be enforced only in the direction the drive was running when the switch was activated (momentarily or continuously, see "C" in Figure C.4).

A Start command in the same direction will only allow 0 Hz to be commanded. A Start in the opposite direction will allow motion with a speed command from the selected speed reference. If TorqProve is Enabled, the drive will hold zero speed for a time determined by [ZeroSpdFloat Time], parameter 605.

Two different input switches can be connected in series to one digital input to provide an end limit at both ends of the application (e.g. lift, conveyor, etc.). With proper set up, the drive will automatically apply the proper stopping based on the direction of the load even though only one digital input is being used.

Limit Switch Set up

1. Move the load to a position between the two decel switches ("A" in Figure C.4).
2. Select the switches in [Digital In1-6 Select]. If switches are only used on one end of travel, simply keep the load off of both switches when selecting in [Digital In1-6 Select].

If the set up is done incorrectly, the application will not move or will move at an incorrect (slower) speed. This can be corrected by selecting "Not Used" for both limit switches in [Digital In1-6 Select]. Then, move the load between the Decel Switches and select the limit switches again in [Digital In1-6 Select].

Important: When properly set up, the drive will remember its location during power cycles (or power loss) unless the load is manually moved during power down conditions. If this occurs, simply reset the feature using the procedure above.

Figure C. 4 Limit Switch Operation

Minimum Speed

Refer to Reverse Speed Limit on page C-31.

Motor Control Technology

Within the PowerFlex family there are several motor control technologies:

- Torque Producers
- Torque Controllers
- Speed Regulators

Torque Producers

Volts/Hertz

This technology follows a specific pattern of voltage and frequency output to the motor, regardless of the motor being used. The shape of the V / Hz curve can be controlled a limited amount, but once the shape is determined, the drive output is fixed to those values. Given the fixed values, each motor will react based on its own speed/torque characteristics.

This technology is good for basic centrifugal fan/pump operation and for most multi-motor applications. Torque production is generally good.

Sensorless Vector

This technology combines the basic Volts/Hertz concept with known motor parameters such as Rated FLA, HP, Voltage, stator resistance and flux producing current. Knowledge of the individual motor attached to the drive allows the drive to adjust the output pattern to the motor and load conditions. By identifying motor parameters, the drive can maximize the torque produced in the motor and extend the speed range at which that torque can be produced.

This technology is excellent for applications that require a wider speed range and applications that need maximum possible torque for breakaway, acceleration or overload. Centrifuges, extruders, conveyors and others are candidates.

Torque Controllers

Vector

This technology differs from the two above, because it actually controls or regulates torque. Rather than allowing the motor and load to actually determine the amount of torque produced, Vector technology allows the drive to regulate the torque to a defined value. By independently identifying and controlling both flux and torque currents in the motor, true control of torque is achieved. High bandwidth current regulators remain active with or without encoder feedback to produce outstanding results.

This technology is excellent for those applications where torque control, rather than mere torque production, is key to the success of the process. These include web handling, demanding extruders and lifting applications such as hoists or material handling.

Vector Control can operate in one of two configurations:

1. Encoderless

Not to be confused with Sensorless Vector above, Encoderless Vector based on Allen-Bradley's patented Field Oriented Control technology means that a feedback device is not required. Torque control can be achieved across a significant speed range without feedback.
2. Closed Loop (with Encoder)

Vector Control with encoder feedback utilizes Allen-Bradley's Force Technology ${ }^{\mathrm{TM}}$. This industry leading technology allows the drive to control torque over the entire speed range, including zero speed. For those applications that require smooth torque regulation at very low speeds or full torque at zero speed, Closed Loop Vector Control is the answer.

Speed Regulators

Any of the PowerFlex drives, regardless of their motor control technology (Volts/Hz, Sensorless Vector or Vector) can be set up to regulate speed. Speed regulation and torque regulation must be separated to understand drive operation.
The PowerFlex 700 can offer improved speed regulation by adding speed feedback. Using a speed feedback device (encoder) tightens speed regulation to 0.001% of base speed and extends the speed range to zero speed

Motor Overload

For single motor applications the drive can be programmed to protect the motor from overload conditions. An electronic thermal overload $\mathrm{I}^{2} \mathrm{~T}$ function emulates a thermal overload relay. This operation is based on three parameters; [Motor NP FLA], [Motor OL Factor] and [Motor OL Hertz] (parameters 042, 048 and 047, respectively).
[Motor NP FLA] is multiplied by [Motor OL Factor] to allow the user to define the continuous level of current allowed by the motor thermal overload. [Motor OL Hertz] is used to allow the user to adjust the frequency below which the motor overload is derated.

The motor can operate up to 102% of FLA continuously. If the drive was just activated, it will run at 150% of FLA for 180 seconds. If the motor had been operating at 100% for over 30 minutes, the drive will run at 150% of FLA for 60 seconds. These values assume the drive is operating above [Motor OL Hertz], and that [Motor OL Factor] is set to 1.00 .

Operation below 100% current causes the temperature calculation to account for motor cooling.

[Motor OL Hertz] defines the frequency where motor overload capacity derate should begin. The motor overload capacity is reduced when operating below [Motor OL Hertz]. For all settings of [Motor OL Hertz] other than zero, the overload capacity is reduced to 70% at an output frequency of zero.

[Motor NP FLA] is multiplied by [Motor OL Factor] to select the rated current for the motor thermal overload. This can be used to raise or lower the level of current that will cause the motor thermal overload to trip. The effective overload factor is a combination of [Motor OL Hertz] and [Motor OL Factor].

Overspeed

Overspeed Limit is a user programmable value that allows operation at maximum speed, but also provides an "overspeed band" that will allow a speed regulator such as encoder feedback or slip compensation to increase the output frequency above maximum speed in order to maintain maximum motor speed.

The figure below illustrates a typical Custom V/Hz profile. Minimum Speed is entered in Hertz and determines the lower speed reference limit during normal operation. Maximum Speed is entered in Hertz and determines the upper speed reference limit. The two "Speed" parameters only limit the speed reference and not the output frequency.

The actual output frequency at maximum speed reference is the sum of the speed reference plus "speed adder" components from functions such as slip compensation.

The Overspeed Limit is entered in Hertz and added to Maximum Speed and the sum of the two (Speed Limit) limit the output frequency. This sum (Speed Limit) must is compared to Maximum Frequency and an alarm is initiated which prevents operation if the Speed Limit exceeds Maximum Frequency.

Note 1: The lower limit on this range can be 0 depending on the value of Speed Adder

Position Indexer/Speed Profiler

The PowerFlex 700 includes a position indexer/speed profiler which provides either point-to-point positioning with a position regulator or speed profiling using a velocity regulator. Point-to point positioning can be either incremental moves or absolute moves which are referenced to home. Encoder feedback (incremental encoder) is required for the position regulator. Speed profiling steps can be time-based or triggered by digital inputs, encoder counts or parameter levels. These speed profiling steps can be operated open loop or with an encoder.

The indexer is programmed by entering data into a 16 step array. Each step has several variables for optimal customization (see below). The steps can be run in a continuous cycle or a single cycle. The process can also move to or from any step in the array.

Step Type	Value	Velocity	Accel Time	Decel Time	Next Step Condition	Dwell	Batch	Next

This feature also includes homing capability to a limit switch or a marker pulse using an automatic homing procedure.

Important: The PowerFlex 700 uses an incremental encoder only. Since absolute encoders are not used, your process must be able to accommodate this homing procedure after a power down or power loss.

Common Guidelines for all Step Types

- Enabling Position Indexer/Speed Profiler

This feature is enabled by selecting "7-Pos/Spd Prof" in [Speed/ Torque Mod], parameter 088. Parameters 700-877 set up the indexer/ profiler.

- Motor Control Modes

For Position Indexing with an encoder, only FVC Vector Control should be used for optimum performance.
For Velocity Profiling, any motor control mode can be used.
However, Sensorless Vector or FVC Vector Control modes will offer the best performance.

- Direction Control

The drive must be configured to allow the profile to control the direction. This is accomplished by setting [Direction Mode], parameter 190 to "Bipolar" (default is "Unipolar").

- Limits

Many threshold values can affect the performance of the profile/ indexer. To help minimize the possibility of overshooting a position, ensure that the following parameters are set for the best performance.

No.	Parameter	Description
153	[Regen Power Limit]	Default is -50% and will likely require a greater negative value. A brake or other means of dissipating regenerative energy is recommended.
147	[Current Lmt Sel]	By default these parameters are set to provide 150\% of drive rating. If lowered, the performance may be degraded.
148	[Current Lmt Val]	
161	[Bus Reg Mode A]	The default setting will adjust frequency to regulate the DC Bus voltage under regenerative conditions. This will most likely cause a position overshoot. To resolve this, select "Dynamic Brak" and size the load resistor for the application.

- Speed Regulator

The bandwidth of the speed regulator will affect the performance. If the connected inertia is relatively high, the bandwidth will be low and therefore a bit sluggish. When programming the acceleration and deceleration rates for each step, do not make them too aggressive or the regulator will be limited and therefore overshoot the desired position.

Position Loop Tuning

Two parameters are available for tuning the position loop.

- [Pos Reg Filter], parameter 718 is a low pass filter at the input of the position regulator.
- [Pos Reg Gain], parameter 719 is a single adjustment for increasing or decreasing the responsiveness of the regulator.

By default these parameters are set at approximately a 6:1 ratio (filter $=25$, gain $=4$). It is recommended that a minimum ratio of $4: 1$ be maintained.

Profile Command Control Word

The profile/indexer is controlled with [Profile Command], parameter 705. The bit definitions are as follows:

Bit	Name	Description
0	Start Step 0	The binary value of these bits determines which step will be the starting step for the profile when a start command is issued. If the value of these bits are not 1-16 the drive will not run since it does not have a valid step to start from. Valid Examples: 00011 = step $3,01100=\operatorname{step} 12$
1	Start Step 1	
2	Start Step 2	
3	Start Step 3	
4	Start Step 4	
5-7	Reserved	Reserved for future use
8	Hold Step	When set, this command will inhibit the profile from transitioning to the next step when the condition(s) required are satisfied. When the hold command is released, the profile will transition to the next step.
9	Pos Redefine	This bit is used to set the present position as home. When this bit is set, [Profile Status] bit At Home will be set and the [Units Traveled] will be set to zero.
10	Find Home	This bit is used to command the find home routine.
11	Vel Override	When this bit is set the velocity of the present step will be multiplied by the value in [Vel Override].
12-31	Reserved	Reserved for future use

The [Profile Command] bits can be set via DPI interface (HIM or Comm) or digital inputs. When digital input(s) are programmed for "Pos Sel 1-5," the starting step of the profile is exclusively controlled by the digital inputs. The DPI interface value for bits $0-4$ will be ignored.

If a digital input is configured for the bit 8-11 functions (see above), the DPI interface or the digital input can activate the command.

Velocity Regulated Step Types and Parameters

Each of the Velocity Regulated steps has the following associated parameters or functions. Refer to the following page for descriptions.

	Value	Velocity	Accel Time	Decel Time	Next Step Condition	Dwell	Batch	Next
Time	Total Move Time	Speed \& Direction	Accel Rate	Decel Rate	Time greater than [Step Value]	Dwell Time	Batch Number	Next Step
Time Blend	Total Time	Speed \& Direction	Accel Rate	Decel Rate	Time greater than [Step Value]	NA	NA	Next Step
Digital Input	Digital Input Number	Speed \& Direction	Accel Rate	Decel Rate	Digital Input logic	Dwell Time	Batch Number	Next Step
Encoder Incremental Blend	Position \& Direction	Speed	Accel Rate	Decel Rate	At Position [Step Value]	NA	NA	Next Step
Parameter Level	Parameter Number +/-	Speed \& Direction	Accel Rate	Decel Rate	$\begin{aligned} & \hline \text { [Step Value] > or } \\ & \text { < [Step Dwell] } \\ & \hline \end{aligned}$	Compare Value	NA	Next Step
End	NA	NA	NA	Decel Rate	At Zero transition	Dwell Time	NA	Stop

NA = Function not applicable to this step type

Time

When started, the drive will ramp to the desired velocity, hold the speed, and then ramp to zero in the programmed time for the given step. Dwell time and batch affect when the next step is executed.

Time Blend

When started, the drive will ramp to the desired velocity and hold speed for the programmed time. At this point it will transition to the next step and ramp to the programmed velocity without going to zero speed.

Digital Input

When started, the drive will ramp to the desired velocity and hold speed until the digital input programmed in the value transitions in the direction defined. When this occurs, the profile will transition to the next step after dwell and batch settings are satisfied. It will then ramp to the programmed velocity without going to zero speed.

Encoder Incremental Blend (EncIncrBlend)

When started, the drive will ramp to the desired velocity and hold speed until the units of travel programmed is reached (within tolerance window). The profile will then transition to the next step and the drive will ramp to the speed of the new step without first going to zero speed.

Encoder Incremental Blend with Hold

This profile is the same as the previous, but contains the "Hold" function. While "Hold" is applied, the step transition is inhibited. When released, the step can then transition if the conditions to transition are satisfied.

Parameter Level (Param Level)

When started, the drive will ramp to the desired velocity, hold speed and compare the parameter value of the parameter number programmed in [Step Value] to the [Step Dwell] level. The sign of the [Step Value] defines "less than or greater than" [Step Dwell]. When true, the profile will transition to the next step.

End

The drive ramps to zero speed and stops the profile. It clears the current step bits and sets the "Complete" bit (14) in [Profile Status], parameter 700.

Position Regulated Step Types and Parameters

Each of the Position Regulated steps has the following associated parameters or functions:

Step Type	Value	Velocity	Accel Time	Decel Time	Next Step Condition	Dwell	Batch	Next
Encoder Absolute	Position \& Direction	Speed	Accel Rate	Decel Rate	At Position	Dwell Time	NA	Next Step
Encoder Incremental	Position \& Direction	Speed	Accel Rate	Decel Rate	At Position	Dwell Time	Batch Number	Next Step
End Hold Position	NA	NA	NA	NA	At Position	Dwell Time	NA	Stop

$N A=$ Function not applicable to this step type

Encoder Absolute

This is a move to an absolute position, which is referenced from the home position. When started the drive ramps to the desired velocity in the direction required, holds the speed, then ramps to zero speed landing or ending at the commanded position within the tolerance window.

Encoder Incremental (Encoder Incr)

This is a move increment from the current position in the direction, distance and speed programmed. When started the drive ramps to the desired velocity, holds the speed, then ramps to zero speed landing or ending at the commanded position within the tolerance window.

End Hold Position

The drive holds the last position and stops the profile after dwell time expires. Must be used with position regulated profile. Do Not use "End."

Homing Routine

Each time the profile/indexer is enabled, the drive requires a home position to be detected. The following options are available:

- Homing to Marker Pulse with Encoder Feedback

When "Find Home" is commanded the homing routine is run when a start command is issued. The Homing bit (11) in [Profile Status] will be set while the homing routine is running. The drive will ramp to the speed and direction set in [Find Home Speed], parameter 713 at the rate set in [Find Home Ramp], parameter 714 until the digital input defined as "Home Limit" is activated. The drive will then ramp to

zero and then back up to first marker pulse prior to the Home Limit switch at $1 / 10$ the [Find Home Speed]. When on the marker pulse, the At Home bit (13) is set in [Profile Status] and the drive is stopped.
Figure C. 5 shows the sequence of operation for homing to a marker pulse. [Encoder Z Chan], parameter 423 must be set to "Marker Input" or "Marker Check" for this type of homing.

Figure C. 5 Homing to Marker

- Homing to Limit Switch with Encoder Feedback

When "Find Home" is commanded, the homing routine is run when a start command is issued. The Homing bit (11) in [Profile Status] will be set while the homing routine is running. The drive will ramp to the speed and direction set in [Find Home Speed] at the rate set in [Find Home Ramp] until the digital input defined as Home Limit is activated. The drive will then reverse direction at $1 / 10$ the [Find Home Speed] to the point where the Home Limit switch activated and stop.

Figure C. 6 shows the sequence of operation for homing to a limit switch with encoder feedback (without a marker pulse). [Encoder Z Chan] must be set to "Pulse Input" or "Pulse Check."

Figure C. 6 Homing to a Limit Switch

- [Encoder Speed], 415 -[Profile Status], 700 - [Units Traveled], 701 —[Dig In Status], 216
- Homing to Limit Switch w/o Encoder Feedback

When "Find Home" is commanded, the homing routine is run when a Start command is issued. The Homing bit (11) in [Profile Status] will be set while the homing routine is running. The drive will ramp to the speed and direction set in [Find Home Speed] at the rate set in [Find Home Ramp] until the digital input defined as Home Limit is activated. The drive will then decelerate to zero. If the switch is no longer activated, the drive will reverse direction at $1 / 10$ the [Find Home Speed] to the switch position and then stop. The Home Limit switch will be active when stopped.
Figure C. 7 shows the sequence of operation for homing to a limit switch without encoder feedback.

Figure C. 7 Homing to Limit Switch (No Feedback)

- Position Redefine

When "Pos Redefine" is set, the present position is established as Home and [Units Traveled] is set to zero.

- Disable Homing Requirement

If a home position is not required, the routine can be disabled by clearing [Alarm Config 1], bit 17 (Prof SetHome) to " 0 ". This will disable the alarm from being set when Pos/Spd Profile mode is configured in [Speed/Torque Mod] and will set the present position as Home.

Once Homing is complete the Find Home command must be removed to allow the profile to be run. If the Find Home command is not removed, when the drive is started the routine will see that it is At Home and the drive will stop.

Example 1 Five Step Velocity Profile (Time-Based and Encoder-Based)

The first three steps are "Time" steps followed by an "Encoder Abs" step to zero and then an "End" step. For each Time step the drive ramps at [Step x AccelTime] to [Step x Velocity] in the direction of the sign of [Step x Velocity]. The drive then decelerates at [Step X DecelTime] to zero. The [Step X Value] is programmed to the desired time for the total time of the accel, run and decel of the step. Each step has a 1 second time programmed in [Step X Dwell] which is applied to the end of each step. After the dwell time expires, the profile transitions to the next step. The absolute step is used to send the profile back to the home position. This is done by programming [Step 4 Value] to zero.

Figure C. 8 Time Example

Step \#	$\begin{array}{\|l} \hline \text { [Step x } \\ \text { Type] } \end{array}$	[Step x Velocity]	[Step x AccelTime]	$\begin{array}{\|l\|} \hline \text { [Step x } \\ \text { DecelTime] } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { [Step } \mathrm{x} \\ \text { Value] } \\ \hline \end{array}$	[Stepx Dwell]	$\begin{array}{\|l\|} \hline \text { [Step x } \\ \text { Batch] } \end{array}$	$\begin{array}{\|l} \hline \text { [Step x } \\ \text { Next] } \\ \hline \end{array}$
1	Time	100	0.5	0.5	5.00	1.00	1	2
2	Time	200	0.5	0.5	5.00	1.00	1	3
3	Time	300	0.5	0.5	5.00	1.00	1	4
4	Encoder Abs	400	0.5	0.5	0.00	1.00	1	5
5	End	N/A	N/A	0.5	N/A	0.00	N/A	N/A

Example 2
 Six Step Velocity Profile (Digital Input-Based)

In each step, the drive ramps at [Step x AccelTime] to [Step x Velocity] in the direction of the sign of [Step x Velocity] until a digital input is detected. When the input is detected it transitions to the next step in the profile. This continues through Digital Input \#6 activating step 5. Step 5 is defined as a "Parameter Level" step. Digital Inputs used in the profile must be defined as "Prof Input."

Important: A transition is required to start each step. If the input is already true when transitioning to a digital input step, the indexer will not go to the next step.

Figure C. 9 Digital Input Example

	$[$ Step \mathbf{x}	$[$ Step \mathbf{x} Velocity $]$	$[$ Step \mathbf{x} AccelTime $]$	$[$ Step \mathbf{x} DecelTime $]$	$[$ Step \mathbf{x} Value $]$	Step Dwell] $]$	$[$ Step \mathbf{x} Batch $]$	$[$ Step \mathbf{x} Next]
1	Digital Input	300	0.5	0.5	3.00	0.00	1	2
2	Digital Input	50	0.5	0.5	4.00	5.00	1	3
3	Digital Input	-300	0.5	0.5	5.00	0.00	1	4
4	Digital Input	-100	0.5	0.5	6.00	0.00	1	5
5	Param Level	-50	0.5	0.5	701	0.00	1	6
6	End	N/A	N/A	0.5	N/A	0.00	N/A	N/A

Example 3
 Five Step Positioner with Incremental Encoder

The first three steps of this indexer are "Encoder Incr" steps followed by an "Encoder Abs" step to zero and then an "End Hold Position" step. For each "Encoder Incr" step the drive ramps at [Step x AccelTime] to [Step x Velocity] in the direction of the sign of [Step xValue]. It then decelerates at the rate of [Step x DecelTime] to the position programmed in [Step x Value] which sets the desired units of travel for the step. When the value programmed in [Step x Value] is reached within the tolerance window programmed in [Encoder Pos Tol], the "At Position" bit is set in [Profile Status]. In this example a dwell value held each of the first three steps "At Position" for 1 second. After the [Step x Dwell] time expires, the profile transitions to the next step. The absolute step is used to send the profile back to the home position. This is accomplished by programming [Step 4 Value] to zero.

Figure C. 10 Encoder Incremental w/Dwell Example

Step \#	[Step x Type]	[Step x Velocity]	[Step x AccelTime]	[Step x DecelTime]	[Step x Value]	[Step x Dwell]	[Stepx Batch]	[Stepx Next]
1	Param Level	100	0.5	0.5	10.00	1.00	1	2
2	Param Level	200	0.5	0.5	10.00	1.00	1	3
3	Param Level	300	0.5	0.5	10.00	1.00	1	4
4	Encoder Abs	400	0.5	0.5	0.00	1.00	1	5
5	End Hold Position	N/A	N/A	0.5	N/A	0.00	N/A	N/A

Power Loss Ride Through

When AC input power is lost, energy is being supplied to the motor from the DC bus capacitors. The energy from the capacitors is not being replaced (via the AC line), thus, the DC bus voltage will fall rapidly. The drive must detect this fall and react according to the way it is programmed. Two parameters display DC bus voltage:

- [DC Bus Voltage] - displays the instantaneous value
- [DC Bus Memory] - displays a 6 minute running average of the voltage.

All drive reactions to power loss are based on [DC Bus Memory]. This averages low and high line conditions and sets the drive to react to the average rather than assumed values. For example, a 480 V installation would have a 480 V AC line and produce a nominal 648 V DC bus. If the drive were to react to a fixed voltage for line loss detect, (i.e. 533 V DC), then normal operation would occur for nominal line installations. However, if a lower nominal line voltage of 440 V AC was used, then nominal DC bus voltage would be only 594 V DC. If the drive were to react to the fixed 533 V level (only -10%) for line loss detect, any anomaly might trigger a false line loss detection. Line loss, therefore always uses the 6 minute average for DC bus voltage and detects line loss based on a fixed percentage of that memory. In the same example, the average would be 594 V DC instead of 650 V DC and the fixed percentage, 27% for "Coast to Stop" and 18% for all others, would allow identical operation regardless of line voltage.

The PowerFlex 70 uses only these fixed percentages. The PowerFlex 700 can selectively use the same percentages or the user can set a trigger point for line loss detect. The adjustable trigger level is set using [Power Loss Level] (see [Power Loss Level] on page 3-33).

Figure C. 11 Power Loss Mode = Coast

Figure C. 12 Power Loss Mode = Decel

Process PID

The internal PI function of the PowerFlex 700 provides closed loop process control with proportional and integral control action. The function is designed for use in applications that require simple control of a process without external control devices. The PI function allows the microprocessor of the drive to follow a single process control loop.

The PI function reads a process variable input to the drive and compares it to a desired setpoint stored in the drive. The algorithm will then adjust the output of the PI regulator, changing drive output frequency to try and make the process variable equal the setpoint.

It can operate as trim mode by summing the PI loop output with a master speed reference.

Or, it can operate as control mode by supplying the entire speed reference. This method is identified as "exclusive mode"

PI Enable

The output of the PI loop can be turned on (enabled) or turned off (disabled). This control allows the user to determine when the PI loop is providing part or all of the commanded speed. The logic for enabling the PI loop is shown below.

The drive must be running for the PI loop to be enabled. The loop will be disabled when the drive is ramping to a stop (unless "Stop Mode" is configured in [PI Configuration]), jogging or the signal loss protection for the analog input(s) is sensing a loss of signal.

If a digital input has been configured to "PI Enable," two events are required to enable the loop: the digital input must be closed AND bit 0 of the PI Control parameter must be $=1$.

If no digital input is configured to "PI Enable," then only the Bit $0=1$ condition must be met. If the bit is permanently set to a " 1 ", then the loop will become enabled as soon as the drive goes into "run".

Reverse Speed Limit

Figure C. 14 [Rev Speed Limit], parameter 454 set to zero

Figure C. 15 [Rev Speed Limit], parameter 454 set to a non-zero Value

Skip Frequency

Figure C. 16 Skip Frequency

Some machinery may have a resonant operating frequency that must be avoided to minimize the risk of equipment damage. To assure that the motor cannot continuously operate at one or more of the points, skip frequencies are used. Parameters 084-086, ([Skip Frequency 1-3]) are available to set the frequencies to be avoided.

The value programmed into the skip frequency parameters sets the center point for an entire "skip band" of frequencies. The width of the band (range of frequency around the center point) is determined by parameter 87, [Skip Freq Band]. The range is split, half above and half below the skip frequency parameter.

If the commanded frequency of the drive is greater than or equal to the skip (center) frequency and less than or equal to the high value of the band (skip plus $1 / 2$ band), the drive will set the output frequency to the high value of the band. See (A) in Figure C.16.

If the commanded frequency is less than the skip (center) frequency and greater than or equal to the low value of the band (skip minus $1 / 2$ band), the drive will set the output frequency to the low value of the band. See (B) in Figure C. 16.

Acceleration and deceleration are not affected by the skip frequencies. Normal accel/decel will proceed through the band once the commanded frequency is greater than the skip frequency. See (A) \& (B) in Figure C.16. This function affects only continuous operation within the band.

Sleep Wake Mode

This function stops (sleep) and starts (wake) the drive based on separately configurable analog input levels rather than discrete start and stop signals. When enabled in "Direct" mode, the drive will start (wake) when an analog signal is greater than or equal to the user specified [Wake Level], and stop the drive when an analog signal is less than or equal to the user specified [Sleep Level]. When Sleep Wake is enabled for "Invert" mode ${ }^{(1)}$, the drive will start (wake) when an analog signal is less than or equal to the user specified [Wake Level], and stop the drive when an analog signal is greater than or equal to the user specified [Sleep Level].

Definitions

- Wake - A start command generated when the analog input value remains above [Wake Level] (or below when Invert mode is active) for a time greater than [Wake Time].
- Sleep - A Stop command generated when the analog input value remains below [Sleep Level] (or above when Invert mode is active) for a time greater than [Sleep Time].
- Speed Reference - The active speed command to the drive as selected by drive logic and [Speed Ref x Sel].
- Start Command - A command generated by pressing the Start button on the HIM, closing a digital input programmed for Start, Run, Run Forward or Run Reverse.

Refer to Figure C. 17.

Figure C. 17 Sleep Wake Mode

Start At PowerUp

A powerup delay time of up to 30 seconds can be programmed through [Powerup Delay], parameter 167. After the time expires, the drive will start if all of the start permissive conditions are met. Before that time, restart is not possible.

All Start Permissives Met?

1. No fault conditions present.
2. No Type 2 alarm conditions present.
3. The terminal block programmed enable input is closed.
4. The Stop input (from all sources) is received.

Powerup Start
Powerup Terminated! Normal Mode

Stop Mode

The PowerFlex 700 offers several methods for stopping a load. The method/mode is defined by [Stop/Brk Mode A/B], parameters 155 \& 156. These modes include:

- Coast
- Ramp
- Ramp to Hold
- DC Brake
- Fast Brake

Additionally, [Flux Braking], parameter 166 can be selected separately to provide additional braking during a "Stop" command or when reducing the speed command. For "Stop" commands, this will provide additional braking power during "Ramp" or "Ramp to Hold" selections
only. If "Fast Brake" or "DC Brake" is used, "Flux Braking" will only be active during speed changes (if enabled).

A "Ramp" selection will always provide the fastest stopping time if a method to dissipate the required energy from the DC bus is provided (i.e. resistor brake, regenerative brake, etc.). The alternative braking methods to external brake requirements can be enabled if the stopping time is not as restrictive. Each of these methods will dissipate energy in the motor (use care to avoid motor overheating). Table C.A describes several braking capability examples.

Table C.A Braking Method Examples

Method	Use When Application Requires ...	Braking Power
Ramp	- The fastest stopping time or fastest ramp time for speed changes (external brake resistor or regenerative capability required for ramp times faster than the methods below). - High duty cycles, frequent stops or speed changes. (The other methods may result in excessive motor heating).	Most
Fast Brake	- Additional braking capability without use of external brake resistor or regenerative units.	More than Flux Braking or DC Brake
Flux Braking	- Fast speed changes and fast stopping time. - Typical stop from speeds below 50% of base speed ("Flux Braking" will likely stop the load faster than "Fast Brake" in this case) Important: This can be used in conjunction with "Ramp" or "Ramp to Hold" for additional braking power or with "Fast Brake" or "DC Brake" for speed changes.	More than DC Brake
$\begin{aligned} & \hline \text { DC } \\ & \text { Brake } \end{aligned}$	- Additional braking capability without use of external brake resistor or regenerative units	Less than above methods

This method releases the motor and allows the load to stop by friction.

1. On Stop, the drive output goes immediately to zero (off).
2. No further power is supplied to the motor. The drive has released control.
3. The motor will coast for a time that is dependent on the mechanics of the system (inertia, friction, etc).

This method uses drive output reduction to stop the load.

1. On Stop, drive output will decrease according to the programmed pattern from its present value to zero. The pattern may be linear or squared. The output will decrease to zero at the rate determined by the programmed [Maximum Freq] and the programmed active [Decel Time x].
2. The reduction in output can be limited by other drive factors such as such as bus or current regulation.
3. When the output reaches zero the output is shut off.
4. The motor, if rotating, will coast from its present speed for a time that is dependent on the mechanics of the system (inertia, friction, etc).

This method combines two of the methods above. It uses drive output reduction to stop the load and DC injection to hold the load at zero speed once it has stopped.

1. On Stop, drive output will decrease according to the programmed pattern from its present value to zero. The pattern may be linear or squared. The output will decrease to zero at the rate determined by the programmed [Maximum Freq] and the programmed active [Decel Time x]
2. The reduction in output can be limited by other drive factors such as bus or current regulation.
3. When the output reaches zero 3 phase drive output goes to zero (off) and the drive outputs DC voltage on the last used phase at the level programmed in [DC Brake Level] Par 158. This voltage causes a "holding" brake torque.
4. DC voltage to the motor continues until a Start command is reissued or the drive is disabled.
5. If a Start command is reissued, DC Braking ceases and he drive returns to normal AC operation. If an Enable command is removed, the drive enters a "not ready" state until the enable is restored.
Fast

This method uses drive output reduction to stop the load.

1. On Stop, the drive output will decrease according to the programmed pattern from its present value to zero at the rate determined by the programmed active [Decel Time x]. This is accomplished by lowering the output frequency below the motor speed where regeneration will not occur. This causes excess energy to be lost in the motor.
2. The reduction in output can be limited by other drive factors such as bus or current regulation.
3. When the output reaches very near zero, DC brake will automatically be used to complete the stop then the output is shut off.

Voltage Tolerance

Drive Rating	Nominal Line Voltage	Nominal Motor Voltage	Drive Full Power Range	Drive Operating Range
	200	200^{\star}	$200-264$	$180-264$
	208	208	$208-264$	
	240	230	$230-264$	
$380-400$	380	380^{\star}	$380-528$	$342-528$
	400	400	$400-528$	
	480	460	$460-528$	
500-600 (Frames 0-4 Only)	600	575^{\star}	$575-660$	$432-660$
500-690 (Frames 5-6 Only)	600	690	575^{\star}	$575-660$

Drive Full Power Range $=$	Nominal Motor Voltage to Drive Rated Voltage $+10 \%$. Rated power is available across the entire Drive Full Power Range.
Drive Operating Range $=$	Lowest t^{*}) Nominal Motor Voltage -10\% to Drive Rated Voltage $+10 \%$. Drive Output is linearly derated when Actual Line Voltage is less than the Nominal Motor Voltage.

Actual Line Voltage (Drive Input)

Example:

Calculate the maximum power of a $5 \mathrm{HP}, 460 \mathrm{~V}$ motor connected to a 480 V rated drive supplied with 342V Actual Line Voltage input.

- Actual Line Voltage $/$ Nominal Motor Voltage $=74.3 \%$
- $74.3 \% \times 5 \mathrm{HP}=3.7 \mathrm{HP}$
- $74.3 \% \times 60 \mathrm{~Hz}=44.6 \mathrm{~Hz}$

At 342 V Actual Line Voltage, the maximum power the $5 \mathrm{HP}, 460 \mathrm{~V}$ motor can produce is 3.7 HP at 44.6 Hz .

A

AC Input
Circuit Breakers, A-8
Ground, 1-4
Line Fuses, A-8
AC Supply
Source, 1-2
Unbalanced, 1-3
Ungrounded, 1-3
Accel Mask, 3-48
Accel Owner, 3-49
Accel Time x, 3-26
Access Panel Removal, 1-7
Adj Volt AccTime, 3-64
Adj Volt Command, 3-63
Adj Volt DecTime, 3-64
Adj Volt Phase, 3-63
Adj Volt Preset, 3-63
Adj Volt Ref Hi, 3-63
Adj Volt Ref Lo, 3-63
Adj Volt S Curve, 3-64
Adj Volt Select, 3-63
Adj Volt Trim \%, 3-64
Adj Volt Trim Hi, 3-64
Adj Volt Trim Lo, 3-64
Adj Volt TrimSel, 3-64
Adjust Voltage Group, 3-63
Adjustable Voltage Operation, C-1
AdjVoltRef Cflct Alarm, 4-10
Agency Certification, A-1
Alarm \& Fault Types, 4-1
Alarm 1 @ Fault, 3-41
Alarm 2 @ Fault, 3-42
Alarm Clear, 3-44
Alarm Config 1, 3-44
Alarm Descriptions, 4-10
Alarm x Code, 3-44
Alarms
AdjVoltRef Cflct, 4-10
Analog In Loss, 4-10
Bipolar Conflict, 4-10
Brake Slipped, 4-10
Decel Inhibt, 4-10
Dig In Conflict, 4-10
Drive OL Level, 4-11
FluxAmpsRef Rang, 4-11
Ground Warn, 4-11
Home Not Set, 4-11

In Phase Loss, 4-11
IntDBRes OvrHeat, 4-11
IR Volts Range, 4-11
lxo VIt Rang, 4-11
Load Loss, 4-11
MaxFreq Conflict, 4-11
Motor Thermistor, 4-11
Motor Type Cflct, 4-11
NP Hz Conflict, 4-11
PI Config Conflict, 4-11
Power Loss, 4-12
Precharge Active, 4-12
Prof Step Cflct, 4-12
PTC Conflict, 4-12
Sleep Config, 4-12
Speed Ref Cflct, 4-12
Start At PowerUp, 4-12
TB Man Ref Cflct, 4-12
Torq Prove Cflct, 4-12
UnderVoltage, 4-12
VHz Neg Slope, 4-12
Waking, 4-12
Alarms Group, 3-44
Alarms, Clearing, 4-9
ALT Key
Functions, B-2
ALT Key Functions, B-2
Ambient Temperature, 1-2
Analog In Loss Alarm, 4-10
Analog In Loss Fault, 4-4
Analog In x Hi, 3-52
Analog In x Lo, 3-52
Analog Inputs Group, 3-51
Analog Inx Value, 3-8
Analog Out Scale, 3-53
Analog Out1 Hi, 3-53
Analog Out1 Lo, 3-53
Analog Out1 Sel, 3-53
Analog Out2 Lo, 3-53
Analog Out2 Sel, 3-53
Analog Outputs Group, 3-52
Anlg Cal Chksum Fault, 4-4
Anlg In Config, 3-51
Anlg In Loss, 3-52
Anig In Sqr Root, 3-51
Anig Out Absolut, 3-52
Anlg Out Config, 3-52
Anlg Out Setpt, 3-54
Applications File, 3-59

Armored Cable, 1-6
Assisted Start Up, 2-3
Auto Mode, 1-21
Auto Rstrt Delay, 3-30
Auto Rstrt Tries, 3-30
Auto Rstrt Tries Fault, 4-4
Auto/Manual
Control, 1-22
Modes, 1-21
Auto-Reset/Start, 4-1
Autotune, 3-12
AutoTune Aborted Fault, 4-4
Autotune Torque, 3-13
Auxiliary Input Fault, 4-4

B

Before Applying Power, 2-1
Bipolar Conflict Alarm, 4-10
Bipolar Inputs, 1-15
Bottom Plate Removal, 1-7
Bottom View Dimensions, A-21
Brake
Dynamic, 3-29
Brake Slipped Alarm, 4-10
Break Frequency, 3-15
Break Voltage, 3-15
Brk Alarm Travel, 3-61
Brk Release Time, 3-60
Brk Set Time, 3-60
BrkSlip Count, 3-60
Bus Capacitors, Discharging, P-3
Bus Reg Kd, 3-29
Bus Reg Ki, 3-28
Bus Reg Kp, 3-29
Bus Reg Mode A, 3-29
Bus Reg Mode B, 3-29
Bypass Contactors, 1-13

C

Cable Entry Plate
Removal, 1-7
SHLD Terminal, 1-4
Cable Length
Motor, 1-7
Cable Trays, 1-7
Cables, Power
Armored, 1-6
Insulation, 1-5

Separation, 1-5
Shielded, 1-5, 1-6
Type, 1-5
Unshielded, 1-5
Capacitors
Bus, Discharging, P-3
Cassette, I/O, 1-16
Catalog Number Explanation, P-4

CE

Conformity, 1-24
Requirements, 1-25
Checklist, Start-Up, 2-1
Circuit Breakers, Input, 1-5
Clear Fault Clr Owner, 3-49
Clearing Alarms, 4-9
Clearing Faults, 4-4
Cntl Bd Overtemp Fault, 4-4
Comm Control Group, 3-46
Commanded Speed, 3-7
Commanded Torque, 3-8
Common Bus, 1-23
Common Mode Capacitors, 1-13
Common Mode Interference, 1-15
Common Symptoms and Corrective Action, 4-13
Communication File, 3-46
Communications
Logic Command Word, A-6
Logic Status Word, A-7
Programmable Controller Configurations, A-5
Compensation, 3-11
Conduit, 1-7
Contactors
Bypass, 1-13
Input, 1-12
Output, 1-12, A-8
Control Options, 3-3
Control Status, 3-14
Control SW Ver, 3-9
Control Wire, 1-16
Control, Auto/Manual, 1-22
Conventions, Manual, P-2
Copycat, B-4
Counts per Unit, 3-66
Cover, Opening, 1-1
Cross Reference, Parameter
by Name, 3-72
by Number, 3-75
Current Lmt Gain, 3-27

Current Lmt Sel, 3-26
Current Lmt Val, 3-27
Current Rate Limit, 3-27
Cutout Dimensions, A-26

D

Data In Ax, 3-49
Data Out Ax, 3-50
Data, Saving, B-4
Datalinks Group, 3-49
DB Resistance Fault, 4-4
DB Resistor, 3-62
DB Resistor Type, 3-29
DB While Stopped, 3-28
DC Brake Level, 3-28
DC Brake Time, 3-28
DC Brk Levl Sel, 3-28
DC Bus Memory, 3-7
DC Bus Voltage, 3-7
DC Input, 1-23
Decel Inhibit Fault, 4-5
Decel Inhibt Alarm, 4-10
Decel Mask, 3-48
Decel Owner, 3-49
Decel Time x, 3-26
Defaults, Resetting to, 3-35, B-4
Diagnostic Data, Viewing, B-4
Diagnostics Group, 3-37
Dig In Conflict Alarm, 4-10
Dig In Status, 3-40
Dig Out Invert, 3-58
Dig Out Mask, 3-59
Dig Out Param, 3-58
Dig Out Setpt, 3-56
Dig Out Status, 3-40
Dig Outx Level, 3-57
Dig Outx OffTime, 3-58
Dig Outx OnTime, 3-57
Digital Inputs Group, 3-55
Digital Inx Sel, 3-55
Digital Outputs Group, 3-55
Digital Outx Sel, 3-57
Dimensions
Bottom View, A-21
Drive, A-17
Flange Mount, A-25
Frame 5 Cutout, A-26
Minimum Clearances, 1-2
Direction Config Group, 3-33

Direction Mask, 3-48
Direction Mode, 3-33
Direction Owner, 3-49
Discrete Speeds Group, 3-20
Distribution Systems
Unbalanced, 1-3
Ungrounded, 1-3
DPI Baud Rate, 3-46
DPI Fdbk Select, 3-47
DPI Port 1-5 Fault, 4-7
DPI Port Locations, B-1
DPI Port Sel, 3-47
DPI Port Value, 3-47
DPI Ref Select, 3-47
Drive Alarm 1, 3-38
Drive Alarm 2, 3-38
Drive Checksum, 3-36
Drive Data Group, 3-8
Drive Frame Size, P-3
Drive Grounding, 1-4
Drive Logic Rslt, 3-46
Drive Memory Group, 3-34
Drive OL Count, 3-40
Drive OL Level Alarm, 4-11
Drive OL Mode, 3-27
Drive Overload Fault, 4-5
Drive Powerup Fault, 4-5
Drive Ramp Rslt, 3-46
Drive Ratings, A-8
Drive Ref Rslt, 3-46
Drive Status 1, 3-37
Drive Status 2, 3-37
Drive Temp, 3-40
DriveExecutive, 3-1
DriveExplorer, 3-1
Droop RPM @ FLA, 3-27
Dyn UserSet Actv, 3-36
Dyn UsrSet Cnfg, 3-36
Dyn UsrSet Sel, 3-36
Dynamic Brake
Resistor Selection, 3-29
Setup, 3-29
Dynamic Control File, 3-26

E

Earthing, see Grounding
Editing Parameters, 3-1
Elapsed kWh, 3-8

Elapsed MWh, 3-7
Elapsed Run Time, 3-7
EMC
Directive, 1-24
Instructions, 1-24
EMI/RFI Filter Grounding, RFI Filter, 1-4
Enc Position Fdbk, 3-15
Enclosure Rating, 1-2
Encoder Loss Fault, 4-5
Encoder Pos Tol, 3-66
Encoder PPR, 3-15
Encoder Quad Err Fault, 4-5
Encoder Speed, 3-15
Encoder Terminal Block, 1-16, 1-18
Encoder Wiring, 1-18
Encoder Z Chan, 3-16
ESD, Static Discharge, P-3
Excessive Load Fault, 4-5
External Brake Resistor, C-3

F

Factory Defaults, Resetting to, 3-35, B-4
Fan/Pump Parameter Set, 3-34
Fault \& Alarm Types, 4-1
Fault 1 Time, 3-43
Fault Amps, 3-41
Fault Bus Volts, 3-41
Fault Clear, 3-42
Fault Clear Mode, 3-43
Fault Clr Mask, 3-48
Fault Config x, 3-42
Fault Descriptions, 4-4
Fault Queue, B-4
Fault Speed, 3-40
Fault x Code, 3-43
Faults
Analog In Loss, 4-4
Anlg Cal Chksum, 4-4
Auto Rstrt Tries, 4-4
AutoTune Aborted, 4-4
Auxiliary Input, 4-4
Cntl Bd Overtemp, 4-4
DB Resistance, 4-4
Decel Inhibit, 4-5
DPI Port 1-5, 4-7
Drive Overload, 4-5
Drive Powerup, 4-5
Encoder Loss, 4-5

Encoder Quad Err, 4-5
Excessive Load, 4-5
Faults Cleared, 4-5
Fit QueueCleared, 4-5
FluxAmpsRef Rang, 4-5
Ground Fault, 4-5
Hardware Fault, 4-5
Hardware PTC, 4-5
Heatsink OvrTemp, 4-5
HW OverCurrent, 4-6
I/O Comm Loss, 4-6
I/O Failure, 4-6
Incompat MCB-PB, 4-6
Input Phase Loss, 4-6
IR Volts Range, 4-6
IXo VoltageRange, 4-6
Load Loss, 4-6
Motor Overload, 4-6
Motor Thermistor, 4-6
NVS I/O Checksum, 4-6
NVS I/O Failure, 4-6
Output PhaseLoss, 4-6
OverSpeed Limit, 4-7
OverVoltage, 4-7
Parameter Chksum, 4-7
Params Defaulted, 4-7
Phase Short, 4-7
Phase to Grnd, 4-7
Port 1-5 DPI Loss, 4-7
Power Loss, 4-7
Power Unit, 4-8
Pulse In Loss, 4-8
Pwr Brd Chksum, 4-8
Pwr Brd Chksum2, 4-8
Replaced MCB-PB, 4-8
See Manual, 4-8
Shear Pin, 4-8
Software, 4-8
SW OverCurrent, 4-8
TorqPrv Spd Band, 4-8
Trnsistr OvrTemp, 4-8
UnderVoltage, 4-9
UserSet Chksum, 4-9
Faults Cleared Fault, 4-5
Faults Group, 3-42
Faults, Clearing, 4-4
Fdbk Filter Sel, 3-15
Feedback Select, 3-17
FGP, 3-3
File
Applications, 3-59
Communication, 3-46
Dynamic Control, 3-26

Inputs \& Outputs, 3-51
Monitor, 3-7
Motor Control, 3-9
Pos/Spd Profile, 3-65
Speed Command, 3-16
Utility, 3-33
File-Group-Parameter, 3-3
Filter, RFI, 1-4
Find Home Ramp, 3-66
Find Home Speed, 3-66
First Environment Installations, 1-25
Flange Mount Dimensions, A-25
Float Tolerance, 3-60
FIt QueueCleared Fault, 4-5
Flux Braking, 3-30
Flux Current, 3-7
Flux Current Ref, 3-12
Flux Up Mode, 3-11
Flux Up Time, 3-11
Flux Vector Control Option, 3-3
FluxAmpsRef Rang Alarm, 4-11
FluxAmpsRef Rang Fault, 4-5
Flying Start En, 3-30
Flying StartGain, 3-30
Frame Designations, A-8
Frame Size, Drive, P-3
Functions, ALT Key, B-2
Fuses
Input, 1-5
Ratings, A-8

G

Gearbox Limit, 3-62
Gearbox Rating, 3-62
Gearbox Ratio, 3-62
Gearbox Sheave, 3-62
General Precautions, P-3
Gnd Warn Level, 3-32
Ground Fault, 4-5
Ground Warn Alarm, 4-11
Grounding
Bus, 1-4
Conductor, 1-4
Filter, 1-4
General, 1-4
Impedance, 1-4
Safety, PE, 1-4
Shields, 1-4
Group
Adjust Voltage, 3-63

Alarms, 3-44
Analog Inputs, 3-51
Analog Outputs, 3-52
Comm Control, 3-46
Datalinks, 3-49
Diagnostics, 3-37
Digital Inputs, 3-55
Digital Outputs, 3-55
Direction Config, 3-33
Discrete Speeds, 3-20
Drive Data, 3-8
Drive Memory, 3-34
Faults, 3-42
HIM Ref Config, 3-34
Load Limits, 3-26
Masks \& Owners, 3-47
Metering, 3-7
MOP Config, 3-34
Motor Data, 3-9
Power Loss, 3-32
Process PI, 3-22
Profile Step, 3-67
ProfSetup/Status, 3-65
Ramp Rates, 3-26
Restart Modes, 3-30
Scaled Blocks, 3-44
Slip Comp, 3-21
Spd Mode \& Limits, 3-16
Speed Feedback, 3-15
Speed References, 3-19
Speed Regulator, 3-25
Speed Trim, 3-21
Stop/Brake Modes, 3-28
Torq Attributes, 3-10
Torque Proving, 3-59
Volts per Hertz, 3-14

H

Hardware Enable, 1-18
Hardware Fault, 4-5
Hardware PTC Fault, 4-5
Heatsink OvrTemp Fault, 4-5
HIM Menu Structure, B-4
HIM Menus
Diagnostics, B-4
Memory Storage, B-4
Preferences, B-4
HIM Ref Config Group, 3-34
HIM, Removing/Installing, B-8
Home Not Set Alarm, 4-11
HW OverCurrent Fault, 4-6

I

I/0
Cassette, 1-16
Terminal Block, 1-16
Wiring, 1-15
I/O Comm Loss Fault, 4-6
I/O Failure Fault, 4-6
I/O Terminal Block, 1-17
In Phase Loss Alarm, 4-11
Incompat MCB-PB Fault, 4-6
Inertia Autotune, 3-13
Input Contactor
Start/Stop, 1-12
Input Devices
Circuit Breakers, 1-5
Contactors, 1-12
Fuses, 1-5
Input Fusing, 1-5
Input Phase Loss Fault, 4-6
Input Potentiometer, 1-19
Input Power Conditioning, 1-3
Inputs \& Outputs File, 3-51
Installation, 1-1
IntDBRes OvrHeat Alarm, 4-11
IR Voltage Drop, 3-12
IR Volts Range Alarm, 4-11
IR Volts Range Fault, 4-6
Ixo VIt Rang Alarm, 4-11
Ixo Voltage Drop, 3-12
IXo VoltageRange Fault, 4-6

J

Jog Mask, 3-48
Jog Owner, 3-48
Jog Speed 1, 3-20
Jog Speed 2, 3-20

K

Kf Speed Loop, 3-25
Ki Speed Loop, 3-25
Kp Speed Loop, 3-25

L

Language, 3-35
Last Stop Source, 3-39
LCD HIM
Menus, B-4

LEDs, 4-2
Lifting/Torque Proving, C-4
Lifting/Torque Proving Start Up, 2-3
Limit Switches, C-11
Linear List, 3-3
Linking Parameters, B-6
Load Frm Usr Set, 3-35
Load Limits Group, 3-26
Load Loss Alarm, 4-11
Load Loss Fault, 4-6
Load Loss Level, 3-33
Load Loss Time, 3-33
Local Mask, 3-48
Local Owner, 3-49
Logic Command Word, A-6
Logic Mask, 3-47, 3-51
Logic Mask Act, 3-51
Logic Status Word, A-7
Low Voltage Directive, 1-24

M

Man Ref Preload, 3-34
Manual Conventions, P-2
Manual Mode, 1-21
Manual/Auto Control, 1-22
Marker Pulse, 3-16
Masks \& Owners Group, 3-47
Max Rod Speed, 3-62
Max Rod Torque, 3-62
MaxFreq Conflict Alarm, 4-11
Maximum Freq, 3-10
Maximum Speed, 3-17
Maximum Voltage, 3-10
Menu Structure, HIM, B-4
Metering Group, 3-7
MicroPos Scale\%, 3-61
Min Adj Voltage, 3-63
Min Rod Speed, 3-62
Minimum Clearances, 1-2
Minimum Speed, 3-17, C-12
MOD LED, 4-2
Modes, Auto/Manual, 1-21
Monitor File, 3-7
MOP Adj VoltRate, 3-63
MOP Config Group, 3-34
MOP Mask, 3-48
MOP Owner, 3-49
MOP Rate, 3-34

MOP Reference, 3-7
Motor Cable Lengths, 1-7
Motor Cntl Sel, 3-10
Motor Control File, 3-9
Motor Control Technology, C-12
Motor Data Group, 3-9
Motor Fdbk Type, 3-15
Motor NP FLA, 3-9
Motor NP Hertz, 3-9
Motor NP Power, 3-9
Motor NP RPM, 3-9
Motor NP Volts, 3-9
Motor OL Count, 3-40
Motor OL Factor, 3-10
Motor OL Hertz, 3-10
Motor Overload, C-14
Motor Overload Fault, 4-6
Motor Poles, 3-10
Motor Sheave, 3-62
Motor Thermistor Alarm, 4-11
Motor Thermistor Fault, 4-6
Motor Type, 3-9
Motor Type Cflct Alarm, 4-11
Mounting
Clearances, 1-2
Orientation, 1-2
Mounting Dimensions, A-17
MOVs, 1-13
Mtr OL Trip Time, 3-40
Mtr Tor Cur Ref, 3-14

N

Neg Torque Limit, 3-14
NET LED, 4-2
Non-Resettable, 4-1
Notch Filter K, 3-15
Notch FilterFreq, 3-15
NP Hz Conflict Alarm, 4-11
NVS I/O Checksum Fault, 4-6
NVS I/O Failure Fault, 4-6

0

OilWell Pump Sel, 3-62
Opening the Cover, 1-1
Operating Modes, 1-21
Operating Temperature, 1-2
Operator Interface, B-5
Output Contactor

Start/Stop, 1-12
Output Current, 3-7
Output Devices
Cable Terminators, A-8
Common Mode Cores, A-8
Contactors, 1-12, A-8
Output Freq, 3-7
Output PhaseLoss Fault, 4-6
Output Power, 3-7
Output Powr Fctr, 3-7
Output Voltage, 3-7
Overspeed, C-16
Overspeed Limit, 3-17
OverSpeed Limit Fault, 4-7
OverVoltage Fault, 4-7

P

Param Access Lvl, 3-34
Parameter
Changing/Editing, B-5
Descriptions, 3-1
File-Group-Parameter Organization, 3-3
Linear List, 3-3
Viewing, B-5
Parameter Chksum Fault, 4-7
Parameter Cross Reference
by Name, 3-72
by Number, 3-75
Parameter Linking, B-6
Parameter View
Advanced
Vector Control, 3-5
Basic
Vector Control, 3-4
Parameters
Accel Mask, 3-48
Accel Owner, 3-49
Accel Time x, 3-26
Adj Volt AccTime, 3-64
Adj Volt Command, 3-63
Adj Volt DecTime, 3-64
Adj Volt Phase, 3-63
Adj Volt Preset, 3-63
Adj Volt Ref Hi, 3-63
Adj Volt Ref Lo, 3-63
Adj Volt S Curve, 3-64
Adj Volt Select, 3-63
Adj Volt Trim \%, 3-64
Adj Volt Trim Hi, 3-64
Adj Volt Trim Lo, 3-64

Adj Volt TrimSel, 3-64
Alarm 1 @ Fault, 3-41
Alarm 2 @ Fault, 3-42
Alarm Clear, 3-44
Alarm Config 1, 3-44
Alarm x Code, 3-44
Analog $\mathrm{In} \times \mathrm{Hi}, 3-52$
Analog $\ln \times \mathrm{LO}, 3-52$
Analog $\ln x$ Value, 3-8
Analog Out Scale, 3-53
Analog Out1 Hi, 3-53
Analog Out1 Lo, 3-53
Analog Out1 Sel, 3-53
Analog Out2 Hi, 3-53
Analog Out2 Lo, 3-53
Analog Out2 Sel, 3-53
Anlg In Config, 3-51
Anlg In Loss, 3-52
Anlg In Sqr Root, 3-51
Anlg Out Absolut, 3-52
Anlg Out Config, 3-52
Anlg Out Setpt, 3-54
Auto Rstrt Delay, 3-30
Auto Rstrt Tries, 3-30
Autotune, 3-12
Autotune Torque, 3-13
Break Frequency, 3-15
Break Voltage, 3-15
Brk Alarm Travel, 3-61
Brk Release Time, 3-60
Brk Set Time, 3-60
BrkSlip Count, 3-60
Bus Reg Kd, 3-29
Bus Reg Ki, 3-28
Bus Reg Kp, 3-29
Bus Reg Mode A, 3-29
Bus Reg Mode B, 3-29
Commanded Speed, 3-7
Commanded Torque, 3-8
Compensation, 3-11
Control Status, 3-14
Control SW Ver, 3-9
Counts per Unit, 3-66
Current Lmt Gain, 3-27
Current Lmt Sel, 3-26
Current Lmt Val, 3-27
Current Rate Limit, 3-27
Data In Ax, 3-49
Data Out Ax, 3-50
DB Resistor, 3-62
DB Resistor Type, 3-29
DB While Stopped, 3-28
DC Brake Level, 3-28
DC Brake Time, 3-28

DC Brk Levl Sel, 3-28
DC Bus Memory, 3-7
DC Bus Voltage, 3-7
Decel Mask, 3-48
Decel Owner, 3-49
Decel Time x, 3-26
Dig In Status, 3-40
Dig Out Invert, 3-58
Dig Out Mask, 3-59
Dig Out Param, 3-58
Dig Out Setpt, 3-56
Dig Out Status, 3-40
Dig Outx Level, 3-57
Dig Outx OffTime, 3-58
Dig Outx OnTime, 3-57
Digital Inx Sel, 3-55
Digital Outx Sel, 3-57
Direction Mask, 3-48
Direction Mode, 3-33
Direction Owner, 3-49
DPI Baud Rate, 3-46
DPI Fdbk Select, 3-47
DPI Port Sel, 3-47
DPI Port Value, 3-47
DPI Ref Select, 3-47
Drive Alarm 1, 3-38
Drive Alarm 2, 3-38
Drive Checksum, 3-36
Drive Logic Rslt, 3-46
Drive OL Count, 3-40
Drive OL Mode, 3-27
Drive Ramp Rslt, 3-46
Drive Ref Rslt, 3-46
Drive Status 1, 3-37
Drive Status 2, 3-37
Drive Temp, 3-40
Droop RPM @ FLA, 3-27
Dyn UserSet Actv, 3-36
Dyn UsrSet Cnfg, 3-36
Dyn UsrSet Sel, 3-36
Elapsed kWh, 3-8
Elapsed MWh, 3-7
Elapsed Run Time, 3-7
Enc Position Fdbk, 3-15
Encoder Pos Tol, 3-66
Encoder PPR, 3-15
Encoder Speed, 3-15
Encoder Z Chan, 3-16
Fault 1 Time, 3-43
Fault Amps, 3-41
Fault Bus Volts, 3-41
Fault Clear, 3-42
Fault Clear Mode, 3-43
Fault Clr Mask, 3-48

Fault Clr Owner, 3-49
Fault Config x, 3-42
Fault Speed, 3-40
Fault x Code, 3-43
Fdbk Filter Sel, 3-15
Feedback Select, 3-17
Find Home Ramp, 3-66
Find Home Speed, 3-66
Float Tolerance, 3-60
Flux Braking, 3-30
Flux Current, 3-7
Flux Current Ref, 3-12
Flux Up Mode, 3-11
Flux Up Time, 3-11
Flying Start En, 3-30
Flying StartGain, 3-30
Gearbox Limit, 3-62
Gearbox Rating, 3-62
Gearbox Ratio, 3-62
Gearbox Sheave, 3-62
Gnd Warn Level, 3-32
Inertia Autotune, 3-13
IR Voltage Drop, 3-12
Ixo Voltage Drop, 3-12
Jog Mask, 3-48
Jog Owner, 3-48
Jog Speed 1, 3-20
Jog Speed 2, 3-20
Kf Speed Loop, 3-25
Ki Speed Loop, 3-25
Kp Speed Loop, 3-25
Language, 3-35
Last Stop Source, 3-39
Load Frm Usr Set, 3-35
Load Loss Level, 3-33
Load Loss Time, 3-33
Local Mask, 3-48
Local Owner, 3-49
Logic Mask, 3-47, 3-51
Logic Mask Act, 3-51
Man Ref Preload, 3-34
Marker Pulse, 3-16
Max Rod Speed, 3-62
Max Rod Torque, 3-62
Maximum Freq, 3-10
Maximum Speed, 3-17
Maximum Voltage, 3-10
MicroPos Scale\%, 3-61
Min Adj Voltage, 3-63
Min Rod Speed, 3-62
Minimum Speed, 3-17
MOP Adj VoltRate, 3-63
MOP Mask, 3-48
MOP Owner, 3-49

MOP Rate, 3-34
MOP Reference, 3-7
Motor Cntl Sel, 3-10
Motor Fdbk Type, 3-15
Motor NP FLA, 3-9
Motor NP Hertz, 3-9
Motor NP Power, 3-9
Motor NP RPM, 3-9
Motor NP Volts, 3-9
Motor OL Count, 3-40
Motor OL Factor, 3-10
Motor OL Hertz, 3-10
Motor Poles, 3-10
Motor Sheave, 3-62
Motor Type, 3-9
Mtr OL Trip Time, 3-40
Mtr Tor Cur Ref, 3-14
Neg Torque Limit, 3-14
Notch Filter K, 3-15
Notch FilterFreq, 3-15
OilWell Pump Sel, 3-62
Output Current, 3-7
Output Freq, 3-7
Output Power, 3-7
Output Powr Fctr, 3-7
Output Voltage, 3-7
Overspeed Limit, 3-17
Param Access Lvl, 3-34
PCP Pump Sheave, 3-62
PI BW Filter, 3-24
PI Configuration, 3-22
PI Control, 3-22
PI Deriv Time, 3-24
PI Error Meter, 3-24
PI Fdback Meter, 3-24
PI Feedback Hi, 3-24
PI Feedback Lo, 3-24
PI Feedback Sel, 3-23
PI Integral Time, 3-23
PI Lower Limit, 3-23
PI Output Gain, 3-25
PI Output Meter, 3-24
PI Preload, 3-23
PI Prop Gain, 3-23
PI Ref Meter, 3-24
PI Reference Hi, 3-24
PI Reference Lo, 3-24
PI Reference Sel, 3-22
PI Setpoint, 3-23
PI Status, 3-24
PI Upper Limit, 3-23
Pos Reg Filter, 3-66
Pos Reg Gain, 3-66
Pos Torque Limit, 3-14

Pos/Spd Prof Cmd, 3-66
Pos/Spd Prof Sts, 3-65
Power Loss Level, 3-33
Power Loss Mode, 3-32
Power Loss Time, 3-32
Powerup Delay, 3-30
PowerUp Marker, 3-43
Preset Speed x, 3-20
PTC HW Value, 3-8
Pulse In Scale, 3-16
Pulse Input Ref, 3-20
PWM Frequency, 3-27
Ramped Speed, 3-8
Rated Amps, 3-8
Rated kW, 3-8
Rated Volts, 3-8
Reference Mask, 3-48
Reference Owner, 3-49
Regen Power Limit, 3-27
Reset Meters, 3-35
Reset To Defalts, 3-35
Rev Speed Limit, 3-18
Rod Load Torque, 3-61
Run Boost, 3-14
S Curve \%, 3-26
Save HIM Ref, 3-34
Save MOP Ref, 3-34
Save To User Set, 3-35
Scale In Hi, 3-44
Scale In Lo, 3-45
Scale In Value, 3-44
Scale Out Hi, 3-45
Scale Out Lo, 3-45
Scale Out Value, 3-45
Shear Pin Time, 3-33
Skip Freq Band, 3-18
Skip Frequency x, 3-17
Sleep Level, 3-32
Sleep Time, 3-32
Sleep-Wake Mode, 3-31
Sleep-Wake Ref, 3-32
Slip Comp Gain, 3-21
Slip RPM @ FLA, 3-21
Slip RPM Meter, 3-21
Spd Fdbk No Filt, 3-8
SpdBand Integrat, 3-60
Speed Desired BW, 3-25
Speed Dev Band, 3-60
Speed Feedback, 3-8
Speed Loop Meter, 3-26
Speed Ref A Hi, 3-19
Speed Ref A Lo, 3-19
Speed Ref A Sel, 3-19
Speed Ref B Hi, 3-19

Speed Ref B Lo, 3-19
Speed Ref B Sel, 3-19
Speed Ref Source, 3-39
Speed Reference, 3-8
Speed Units, 3-16
Speed/Torque Mod, 3-18
Start At PowerUp, 3-30
Start Inhibits, 3-39
Start Mask, 3-47
Start Owner, 3-48
Start/Acc Boost, 3-14
Status 1 @ Fault, 3-41
Status 2 @ Fault, 3-41
Step x AccelTime, 3-68
Step x Batch, 3-70
Step x DecelTime, 3-69
Step x Dwell, 3-70
Step x Next, 3-71
Step x Type, 3-67
Step x Value, 3-69
Step x Velocity, 3-68
Stop Mode x, 3-28
Stop Owner, 3-48
SV Boost Filter, 3-11
TB Man Ref Hi, 3-20
TB Man Ref Lo, 3-20
TB Man Ref Sel, 3-20
Testpoint x Data, 3-42
Testpoint x Sel, 3-42
Torq Prove Sts, 3-61
Torq Ref A Div, 3-13
TorqAlarm Action, 3-61
TorqAlarm Dwell, 3-61
TorqAlarm Level, 3-61
TorqAlrm Timeout, 3-61
TorqAlrm TO Act, 3-61
TorqLim SlewRate, 3-60
TorqProve Cnfg, 3-59
TorqProve Setup, 3-60
Torque Current, 3-7
Torque Ref B Mult, 3-13
Torque Ref x Hi, 3-13
Torque Ref x Lo, 3-13
Torque Ref x Sel, 3-13
Torque Setpoint1, 3-14
Torque Setpoint2, 3-14
Total Gear Ratio, 3-62
Total Inertia, 3-26
Trim \% Setpoint, 3-21
Trim Hi, 3-21
Trim In Select, 3-21
Trim Lo, 3-21
Trim Out Select, 3-21
Units Traveled, 3-65

Vel Override, 3-66
Voltage Class, 3-35
Wake Level, 3-32
Wake Time, 3-32
Write Mask Act
Write Mask Act, 3-50
Write Mask Cfg, 3-50
Zero SpdFloatTime, 3-60
Params Defaulted Fault, 4-7
PCP Pump Sheave, 3-62
PE Ground, 1-4
Phase Short Fault, 4-7
Phase to Grnd Fault, 4-7
PI BW Filter, 3-24
PI Config Conflict Alarm, 4-11
PI Configuration, 3-22
PI Control, 3-22
PI Deriv Time, 3-24
PI Error Meter, 3-24
PI Fdback Meter, 3-24
PI Feedback Hi, 3-24
PI Feedback Lo, 3-24
PI Feedback Sel, 3-23
PI Integral Time, 3-23
PI Lower Limit, 3-23
PI Output Gain, 3-25
PI Output Meter, 3-24
PI Preload, 3-23
PI Prop Gain, 3-23
PI Ref Meter, 3-24
PI Reference Hi, 3-24
PI Reference Lo, 3-24
PI Reference Sel, 3-22
PI Setpoint, 3-23
PI Status, 3-24
PI Upper Limit, 3-23
Port 1-5 DPI Loss Fault, 4-7
PORT LED, 4-2
Ports, DPI Type, B-1
Pos Reg Filter, 3-66
Pos Reg Gain, 3-66
Pos Torque Limit, 3-14
Pos/Spd Prof Cmd, 3-66
Pos/Spd Prof Sts, 3-65
Pos/Spd Profile File, 3-65
Potentiometer, Wiring, 1-19
Power Cables/Wiring, 1-5
Power Conditioning, Input, 1-3
Power Loss Alarm, 4-12

Power Loss Fault, 4-7
Power Loss Group, 3-32
Power Loss Level, 3-33
Power Loss Mode, 3-32
Power Loss Ride Through, C-27
Power Loss Time, 3-32
Power Terminal Block, 1-10
Power Unit Fault, 4-8
Power Wiring
Access Panel, 1-7
General, 1-7
PowerFlex 700 Reference Manual, P-1
Powering Up the Drive, 2-1
Powerup Delay, 3-30
PowerUp Marker, 3-43
Precautions, General, P-3
Precharge, 1-23
Precharge Active Alarm, 4-12
Preferences, Setting, B-4
Preset Speed x, 3-20
Process PI Group, 3-22
Process PID, C-28
Prof Step Cflct Alarm, 4-12
Profile Step Group, 3-67
ProfSetup/Status Group, 3-65
Programmable Controller
Configurations, A-5
Programming, 3-1
PTC Conflict Alarm, 4-12
PTC HW Value, 3-8
Publications, Reference, P-2
Pulse In Loss Fault, 4-8
Pulse In Scale, 3-16
Pulse Input, 1-18
Pulse Input Ref, 3-20
PWM Frequency, 3-27
Pwr Brd Chksum Fault, 4-8
Pwr Brd Chksum2, 4-8
PWR LED, 4-2

R

Ramp Rates Group, 3-26
Ramped Speed, 3-8
Rated Amps, 3-8
Rated kW, 3-8
Rated Volts, 3-8
Ratings, Drive, A-8
Reference Control, 1-21

Reference Manual, P-1
Reference Mask, 3-48
Reference Material, P-2
Reference Owner, 3-49
Regen Power Limit, 3-27
Removing Cover, 1-1
Repeated Start/Stop, 1-12
Replaced MCB-PB Fault, 4-8
Reset Meters, 3-35
Reset to Defaults, 3-35, B-4
Restart Modes Group, 3-30
Rev Speed Limit, 3-18
Reverse Speed Limit, C-31
Rod Load Torque, 3-61
Run Boost, 3-14

S

S Curve \%, 3-26
S.M.A.R.T. Start Up, 2-3

Safety Ground, 1-4
Save HIM Ref, 3-34
Save MOP Ref, 3-34
Save To User Set, 3-35
Saving Data, B-4
Scale In Hi, 3-44
Scale In Lo, 3-45
Scale In Value, 3-44
Scale Out Hi, 3-45
Scale Out Lo, 3-45
Scale Out Value, 3-45
Scaled Blocks Group, 3-44
SCANport
Vector Control, P-5
See Manual Fault, 4-8
Setting Preferences, B-4
Shear Pin Fault, 4-8
Shear Pin Time, 3-33
Shielded Cables
Power, 1-6
SHLD Terminal, 1-4
Short Circuit Protection, 1-5
Signal Wire, 1-15
Skip Freq Band, 3-18
Skip Frequency, C-32
Skip Frequency x, 3-17
Sleep Config Alarm, 4-12
Sleep Level, 3-32
Sleep Time, 3-32

Sleep Wake Mode, C-34
Sleep-Wake Mode, 3-31
Sleep-Wake Ref, 3-32
Slip Comp Gain, 3-21
Slip Comp Group, 3-21
Slip RPM @ FLA, 3-21
Slip RPM Meter, 3-21
Software Fault, 4-8
Spd Fdbk No Filt, 3-8
Spd Mode \& Limits Group, 3-16
SpdBand Integrat, 3-60
Specifications
Agency Certification, A-1
Control, A-2, A-3
Drive Ratings, A-8
Electrical, A-2
Encoder, A-3
Environment, A-2
Protection, A-1, A-2
Speed Command File, 3-16
Speed Command Sources, 1-21
Speed Desired BW, 3-25
Speed Dev Band, 3-60
Speed Feedback, 3-8
Speed Feedback Group, 3-15
Speed Loop Meter, 3-26
Speed Pot, 1-19
Speed Ref A Hi, 3-19
Speed Ref A Lo, 3-19
Speed Ref A Sel, 3-19
Speed Ref B Hi, 3-19
Speed Ref B Lo, 3-19
Speed Ref B Sel, 3-19
Speed Ref Cflct Alarm, 4-12
Speed Ref Source, 3-39
Speed Reference, 3-8
Speed Reference Control, 1-21
Speed Reference Selection, 1-21
Speed References Group, 3-19
Speed Regulator Group, 3-25
Speed Trim Group, 3-21
Speed Units, 3-16
Speed/Torque Mod, 3-18
Standard Control Option, 3-3
Start At PowerUp, 3-30, C-36
Start At PowerUp Alarm, 4-12
Start Inhibits, 3-39
Start Mask, 3-47
Start Owner, 3-48

Start/Acc Boost, 3-14
Start/Stop, Repeated, 1-12
Start-Up
Assisted, 2-3
Checklist, 2-1
Lifting/Torque Proving, 2-3
S.M.A.R.T., 2-3

Static Discharge, ESD, P-3
Status 1 @ Fault, 3-41
Status 2 @ Fault, 3-41
Status LEDs, 4-2
Step x AccelTime, 3-68
Step x Batch, 3-70
Step x DecelTime, 3-69
Step x Dwell, 3-70
Step x Next, 3-71
Step x Type, 3-67
Step x Value, 3-69
Step x Velocity, 3-68
Stop Mode x, 3-28
Stop Owner, 3-48
Stop/Brake Modes Group, 3-28
STS LED, 4-2
Supply Source, 1-2
SV Boost Filter, 3-11
SW OverCurrent Fault, 4-8
System Grounding, 1-4

T

TB Man Ref Cflct Alarm, 4-12
TB Man Ref Hi, 3-20
TB Man Ref Lo, 3-20
TB Man Ref Sel, 3-20
Terminal Block
Encoder, 1-16, 1-18
I/O, 1-16, 1-17
Power, 1-10
Wire Size
Encoder, 1-16
I/O, 1-16
Power, 1-9
Testpoint Codes and Functions, 4-16
Testpoint x Data, 3-42
Testpoint x Sel, 3-42
Torq Attributes Group, 3-10
Torq Prove Cflct Alarm, 4-12
Torq Prove Sts, 3-61
Torq Ref A Div, 3-13
TorqAlarm Action, 3-61

TorqAlarm Dwell, 3-61
TorqAlarm Level, 3-61
TorqAlrm Timeout, 3-61
TorqAlrm TO Act, 3-61
TorqLim SlewRate, 3-60
TorqProve Cnfg, 3-59
TorqProve Setup, 3-60
TorqPrv Spd Band Fault, 4-8
Torque Current, 3-7
Torque Proving, C-4
Torque Proving Group, 3-59
Torque Proving Start Up, 2-3
Torque Ref B Mult, 3-13
Torque Ref x Hi, 3-13
Torque Ref x Lo, 3-13
Torque Ref x Sel, 3-13
Torque Reference Source, 1-21
Torque Setpoint1, 3-14
Torque Setpoint2, 3-14
Total Gear Ratio, 3-62
Total Inertia, 3-26
Trim \% Setpoint, 3-21
Trim Hi, 3-21
Trim In Select, 3-21
Trim Lo, 3-21
Trim Out Select, 3-21
Trnsistr OvrTemp Fault, 4-8
Troubleshooting, 4-1

U

Unbalanced/Ungrounded Supply, 1-3
UnderVoltage
Alarm, 4-12
Fault, 4-9
Ungrounded Distribution Systems, 1-13
Units Traveled, 3-65
Unshielded Power Cables, 1-5
User Configurable Alarm, 4-1
User Sets, B-4
UserSet Chksum Fault, 4-9
Utility File, 3-33

V

Vel Override, 3-66
VHz Neg Slope Alarm, 4-12
Viewing and Changing Parameters, B-5
Voltage Class, 3-35
Voltage Tolerance, C-40

Volts per Hertz Group, 3-14

W

Wake Level, 3-32
Wake Time, 3-32
Waking Alarm, 4-12
Web Sites, see WWW, World Wide Web
Wire
Control, 1-16
Signal, 1-15
Wiring, 1-1
Access Panel Removal, 1-7
Cable Entry Plate Removal, 1-7
Encoder, 1-18
Hardware Enable, 1-18
I/O, 1-15
Potentiometer, 1-19
Power, 1-5
Write Mask Cfg, 3-50
WWW, World Wide Web, 1-1, P-1, P-2,

Back-2

Z

Zero SpdFloatTime, 3-60

PowerFlex 700 Parameter Record

Number	Parameter Name	Setting
40	Motor Type	
41	Motor NP Volts	
42	Motor NP FLA	
43	Motor NP Hertz	
44	Motor NP RPM	
45	Motor NP Power	
46	Mtr NP Pwr Units	
47	Motor OL Hertz	
48	Motor OL Factor	
49	Motor Poles	
53	Motor Cntl Sel	
54	Maximum Voltage	
55	Maximum Freq	
56	Compensation	
57	Flux Up Mode	
58	Flux Up Time	
59	SV Boost Filter	
61	Autotune	
62	IR Voltage Drop	
63	Flux Current Ref	
64	Ixo Voltage Drop	
66	Autotune Torque	
67	Inertia Autotune	
69	Start/Acc Boost	
70	Run Boost	
71	Break Voltage	
72	Break Frequency	
79	Speed Units	
80	Feedback Select	
81	Minimum Speed	
82	Maximum Speed	
83	Overspeed Limit	
84-86	Skip Frequency X	
87	Skip Freq Band	
88	Speed/Torque Mod	
90, 93	Speed Ref X Sel	
91,94	Speed Ref X Hi	
92, 95	Speed Ref X Lo	
96	TB Man Ref Sel	
97	TB Man Ref Hi	
98	TB Man Ref Lo	
100	Jog Speed 1	
101-107	Preset Speed X	
108	Jog Speed 2	
116	Trim \% Setpoint	
117	Trim In Select	
118	Trim Out Select	
119	Trim Hi	
120	Trim Lo	
121	Slip RPM @ FLA	
122	Slip Comp Gain	
124	PI Configuration	
125	PI Control	
126	PI Reference Sel	
127	PI Setpoint	
128	PI Feedback Sel	
129	PI Integral Time	
130	PI Prop Gain	
131	PI Lower Limit	
132	PI Upper Limit	

Number	Parameter Name	Setting
133	PI Preload	
139	PI BW Filter	
140, 141	Accel Time X	
142, 143	Decel Time X	
145	DB While Stopped	
146	S Curve \%	
147	Current Lmt Sel	
148	Current Lmt Val	
149	Current Lmt Gain	
150	Drive OL Mode	
151	PWM Frequency	
152	Droop RPM @ FLA	
153	Regen Power Limit	
154	Current Rate Limit	
155, 156	Stop Mode X	
157	DC Brk Lvl Sel	
158	DC Brake Level	
159	DC Brake Time	
160	Bus Reg Ki	
161, 162	Bus Reg Mode X	
163	DB Resistor Type	
164	Bus Reg Kp	
165	Bus Reg Kd	
166	Flux Braking	
167	Powerup Delay	
168	Start At PowerUp	
169	Flying Start En	
170	Flying StartGain	
174	Auto Rstrt Tries	
175	Auto Rstrt Delay	
177	Gnd Warn Level	
178	Sleep-Wake Mode	
179	Sleep-Wake Ref	
180	Wake Level	
181	Wake Time	
182	Sleep Level	
183	Sleep Time	
184	Power Loss Mode	
185	Power Loss Time	
186	Power Loss Level	
187	Load Loss Level	
188	Load Loss Time	
189	Shear Pin Time	
190	Direction Mode	
192	Save HIM Ref	
193	Man Ref Preload	
194	Save MOP Ref	
195	MOP Rate	
196	Param Access Lvl	
197	Reset To Defalts	
198	Load Frm Usr Set	
199	Save To User Set	
200	Reset Meters	
201	Language	
202	Voltage Class	
234, 236	Testpoint X Sel	
238	Fault Config 1	
240	Fault Clear	
241	Fault Clear Mode	
259	Alarm Config 1	

Number	Parameter Name	Setting
261	Alarm Clear	
270	DPI Baud Rate	
274	DPI Port Sel	
276	Logic Mask	
277	Start Mask	
278	Jog Mask	
279	Direction Mask	
280	Reference Mask	
281	Accel Mask	
282	Decel Mask	
283	Fault Clr Mask	
284	MOP Mask	
285	Local Mask	
298	DPI Ref Select	
299	DPI Fdbk Select	
300-307	Data In XX	
310-317	Data Out XX	
320	Anlg In Config	
321	Anlg In Sqr Root	
322, 325	Analog In X Hi	
323, 326	Analog In X Lo	
324, 327	Analog In X Loss	
340	Anlg Out Config	
341	Anlg Out Absolut	
342, 345	Analog OutX Sel	
343, 346	Analog OutX Hi	
344, 347	Analog OutX Lo	
354, 355	Anlg OutX Scale	
361-366	Digital InX Sel	
377, 378	Anlg OutX Setpt	
379	Dig Out Setpt	
380, 384, 388	Digital OutX Sel	
381, 385, 389	Dig OutX Level	
382, 386, 390	Dig OutX OnTime	
383, 387, 391	Dig OutX OffTime	
412	Motor Fdbk Type	
413	Encoder PPR	
416	Fdbk Filter Sel	
419	Notch Filter Freq	
420	Notch Filter K	
422	Pulse In Scale	
423	Encoder Z Chan	
427, 431	Torque Ref X Sel	
428, 432	Torque Ref X Hi	
429, 433	Torque Ref X Lo	
430	Torq Ref A Div	
434	Torque Ref B Mult	
435	Torque Setpoint	
436	Pos Torque Limit	
437	Neg Torque Limit	
438	Torque Setpoint2	
440	Control Status	
445	Ki Speed Loop	
446	Kp Speed Loop	
447	Kf Speed Loop	
449	Speed Desired BW	
450	Total Inertia	
454	Rev Speed Limit	
459	PI Deriv Time	
460	PI Reference Hi	
461	PI Reference Lo	
462	PI Feedback Hi	
463	PI Feedback Lo	
476-494	ScaleX In Value	
477-495	ScaleX In Hi	

Number	Parameter Name	Setting
478-496	ScaleX In Lo	
479-497	ScaleX Out Hi	
480-498	ScaleX Out Lo	
596	Write Mask Cfg	
597	Write Mask Act	
598	Logic Mask Act	
600	TorqProve Cnfg	
601	TorqProve Setup	
602	Spd Dev Band	
603	SpdBand Integrat	
604	Brk Release Time	
605	ZeroSpdFloatTime	
606	Float Tolerance	
607	Brk Set Time	
608	TorqLim SlewRate	
609	BrkSlip Count	
610	Brk Alarm Travel	
611	MicroPos Scale\%	
632	TorqAlarm Level	
633	TorqAlarm Action	
634	TorqAlarm Dwell	
635	TorqAlrm Timeout	
636	TorqAlrm TO Act	
637	PCP Pump Sheave	
638	Max Rod Torque	
639	Min Rod Speed	
640	Max Rod Speed	
641	OilWell Pump Sel	
642	Gearbox Rating	
643	Gearbox Sheave	
644	Gearbox Ratio	
645	Motor Sheave	
647	DB Resistor	
648	Gearbox Limit	
650	Adj Volt Phase	
651	Adj Volt Select	
652	Adj Volt Ref Hi	
653	Adj Volt Ref Lo	
654-660	Adj Volt Preset1-7	
661	Min Adj Voltage	
663	MOP Adj VoltRate	
669	Adj Volt TrimSel	
670	Adj Volt Trim Hi	
671	Adj Volt Trim Lo	
672	Adj Volt Trim \%	
675	Adj Volt AccTime	
676	Adj Volt DecTime	
677	Adj Volt S Curve	
705	Pos/Spd Prof Cmd	
707	Encoder Pos Tol	
708	Counts Per Unit	
711	Vel Override	
713	Find Home Speed	
714	Find Home Ramp	
718	Pos Reg Filter	
719	Pos Reg Gain	
720...	Step x Type	
721...	Step x Velocity	
722...	Step x AccelTime	
723...	Step x DecelTime	
724...	Step x Value	
725...	Step x Dwell	
726...	Step x Batch	
727...	Step x Next	

www.rockwellautomation.com

Corporate Headquarters

Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212 .5201
Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions
Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444 Europe/Middle East/Africa: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2663 0600, Fax: (32) 26630640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe/Middle East/Africa: Rockwell Automation, Herman-Heinrich-Gossen-Strasse 3, 50858 Köln, Germany, Tel: 49 (0) 2234379410 , Fax: 49 (0) 22343794164 Asia Pacific: Rockwell Automation, 55 Newton Road, \#11-01/02 Revenue House, Singapore 307987, Tel: (65) 6356-9077, Fax: (65) 6356-9011
U.S. Allen-Bradley Drives Technical Support

Tel: (1) 262.512 .8176 , Fax: (1) 262.512 .2222 , Email: support@drives.ra.rockwell.com, Online: www.ab.com/support/abdrives

[^0]: DriveExplorer, DriveExecutive, Force Technology and SCANport are trademarks of Rockwell Automation, Inc. PowerFlex and PLC are registered trademarks of Rockwell Automation, Inc.
 ControlNet is a trademark of ControlNet International, Ltd.
 DeviceNet is a trademark of the Open DeviceNet Vendor Association.

[^1]: (1) Refer to the Attention statement on page 1-15 for important bipolar wiring information.

[^2]: ${ }^{(1)}$ Important: Programming inputs for 2 wire control deactivates all HIM Start buttons.

[^3]: ** These parameters will only be displayed when parameter 053 [Motor Cntl Sel] is set to option "4."

[^4]: * These parameters will only be displayed when parameter 053 [Motor Cntl Sel] is set to option "2 or 3."
 ** These parameters will only be displayed when parameter 053 [Motor Cntl Sel] is set to option "4."

[^5]: ${ }^{(1)}$ See page 4-1 for a description of alarm types.

[^6]: ${ }^{(1)}$ Worst case condition including Vector Control board, HIM and Communication Module

